A Comparative Study of the Presence of Minerals, Flavonoids and Total Phenolic Compounds in the Leaves of Common Traditional Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Planting
2.2. Determination of Mineral Content
2.3. Preparation, Quantification and Identification of Phenolic Compounds
2.4. Determination of Total Phenolics
2.5. Determination of Total Flavonoid Content
2.6. Determination of Antioxidant Activity
2.7. Experimental Design and Data Analysis
3. Results
3.1. Leaf Mineral Content
3.2. Occurrence of Bioactive Molecules
3.3. Relationships between the Flavonoids, Minerals and Phenolic Compounds
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van der Walt, A.M.; Loots, D.T.; Ibrahima, M.I.M.; Bezuidenhout, C.C. Minerals, Trace Elements and Antioxidant Phytochemicals in Wild African Dark-Green Leafy Vegetables (Morogo). S. Afr. J. Sci. 2009, 105, 444–448. [Google Scholar]
- van Rensburg, W.S.J.; van Averbeke, W.; Slabbert, R.; Faber, M.; van Jaarsveld, P.; van Heerden, I.; Wenhold, F.; Oelofse, A. African Leafy Vegetables in South Africa. Water S. Afr. 2007, 33, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Akundabweni, L.S.; Peter-Paul, C.; Singh, B.B. Evaluation of Elite Lines of Cowpea (Vigna unguiculata (L.) Walp.) for Leaf/Fodder Plus Grain (i.e., Dual Purpose). Trop. Agric. 1989, 67, 133–136. [Google Scholar]
- Maseko, I.; Ncube, B.; Mabhaudhi, T.; Tesfay, S.; Chimonyo, V.G.P.; Araya, H.T.; Fessehazion, M.; Du Plooy, C.P. Nutritional Quality of Selected African Leafy Vegetables Cultivated Under Varying Water Regimes and Different Harvests. S. Afr. J. Bot. 2019, 126, 78–84. [Google Scholar] [CrossRef]
- Nkongolo, K.K. Genetic Characterization of Malawian Cowpea (Vigna unguiculata (L.) Walp.) Landraces: Diversity and Gene flow Among Accessions. Euphytica 2003, 129, 219–228. [Google Scholar] [CrossRef]
- Keller, G.B.; Mndiga, H.; Maass, B.L. Diversity and Genetic Erosion of Traditional Vegetables in Tanzania from the Farmer’s Point of View. Plant Genet. Res. 2005, 3, 400–413. [Google Scholar] [CrossRef]
- Keding, G.; Weinberger, K.; Swai, I.; Mndiga, H. Diversity, Traits and Use of Traditional Vegetables in Tanzania; Technical Bulletin No. 40. AVRDC; The World Vegetable Center: Shanhua, Taiwan, 2007; Volume 53, pp. 400–413. [Google Scholar]
- Oluoch, M.O. Production Practices of Pumpkins for Improved Productivity. In Proceedings of the Technical Consultation Workshop, Arusha, Tanzania, 7–8 December 2009. [Google Scholar]
- Cartea, M.E.; Velasco, P. Glucosinolates in Brassica Foods: Bioavailability in Food and Significance for Human Health. Phytochem. Rev. 2008, 7, 213–229. [Google Scholar] [CrossRef]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant Phenolics: Recent Advances on their Biosynthesis, Genetics, and Ecophysiology. Plant Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef]
- Colonna, E.; Rouphael, Y.; Barbieri, G.; De Pascale, S. Nutritional Quality of Ten Leafy Vegetables Harvested at Two Light Intensities. Food Chem. 2016, 199, 702–710. [Google Scholar] [CrossRef]
- Moussa, M.I.D.; Alashi, A.M.; Sossa-Vihotogbe, C.N.A.; Akponikpe, P.B.I.; Baco, M.N.; Djenontin, A.J.; Aluko, R.E.; Akissoe, N.H. Proximate Composition, Mineral Profile and Trypsin-Inhibitory of West African Leafy Vegetables: Influence of Urea Micro-Dosing and Harvest Time. Pol. J. Food Nutr. Sci. 2020, 70, 179–188. [Google Scholar] [CrossRef]
- Adebooye, O.C.; Vijayalakshmi, R.; Singh, V. Peroxidase Activity, Chlorophylls and Antioxidant Profile of Two Leaf Vegetables (Solanum nigrum L. and Amaranthus cruentus L.) Under Six Pre-treatment Methods Before Cooking. Int. J. Food Sci. Technol. 2008, 43, 173–178. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Nutrients, Minerals, Pigments, Phytochemicals, and Radical Scavenging Activity in Amaranthus blitum Leafy vegetables. Sci. Rep. 2020, 10, 3868. [Google Scholar] [CrossRef] [Green Version]
- Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as Potential Antioxidant Therapeutic Agents: Mechanism and Actions. Mutat. Res.-Fund. Mol. Mutagen. 2005, 579, 200–213. [Google Scholar] [CrossRef]
- Amarowicz, R.; Pegg, R.; Rahimi-Moghaddam, P.; Barl, B.; Weil, J. Free-Radical Scavenging Capacity and Antioxidant Activity of Selected Plant Species from the Canadian Prairies. Food Chem. 2004, 84, 551–562. [Google Scholar] [CrossRef]
- Bendary, E.; Francis, R.R.; Ali, H.M.G.; Sarwat, M.I.; Hady, S. Antioxidant and Structure–Activity Relationships (SARs) of Some Phenolic and Anilines Compounds. Ann. Agric. Sci. 2013, 58, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Côté, J.; Caillet, S.; Doyon, G.; Sylvain, J.-F.; Lacroix, M. Bioactive Compounds in Cranberries and Their Biological Properties. Crit. Rev. Food Sci. Nutr. 2010, 50, 666–679. [Google Scholar] [CrossRef]
- Oberoi, H.S.; Sandhu, S.K. Therapeutic and Nutraceutical Potential of Bioactive Compounds Extracted from Fruit Residues. Crit. Rev. Food Sci. Nutr. 2015, 55, 319–337. [Google Scholar]
- Afolayan, A.J.; Jimoh, F. Nutritional Quality of Some Wild Leafy Vegetables in South Africa. Int. J. Food Sci. Nutr. 2009, 60, 424–431. [Google Scholar] [CrossRef]
- Mzezewa, J.; Misi, T.; van Rensburg, L.D. Characterization of Rainfall at a Semi-Arid Ecotope in the Limpopo Province (South Africa) and Its Implications for Sustainable Crop Production. Water S. Afr. 2009, 36, 19–26. [Google Scholar]
- Gamba, M.; Raguindin, P.F.; Asllanaj, E.; Merlo, F.; Glisic, M.; Minder, B.; Bussler, W.; Metzger, B.; Hua Kern, H.; Muka, T. Bioactive Compounds and Nutritional Composition of Swiss Chard (Beta vulgaris L. var. cicla) and flavescens. Crit. Rev. Food Sci. Nutr. 2020, 61, 3465–3480. [Google Scholar] [CrossRef] [PubMed]
- Meda, N.T.R.; Bangou, M.J.; Bakasso, S.; Millogo-Rasolodimby, J.; Nacoulma, O.G. Antioxidant Activity of Phenolic and Flavonoid Fractions of Cleome gynandra and Maerua angolensis of Burkina Faso. J. Appl. Pharm. Sci. 2013, 3, 036–042. [Google Scholar] [CrossRef] [Green Version]
- Obeng, E.; Kpodo, F.M.; Tettey, C.O.; Essuman, E.K.; Adzinyo, O.A. Antioxidant, total phenols and proximate constituents of four tropical leafy vegetables. Sci. Afr. 2020, 7, e00227. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Response of Nutrients, Minerals, Antioxidant Leaf Pigments, Vitamins, Polyphenol, Flavonoid and Antioxidant Activity in Selected Vegetable Amaranth Under Four Soil Water Content. Food Chem. 2018, 252, 72–83. [Google Scholar] [CrossRef]
- Meir, S.; Kanner, J.; Akiri, B.; Philosoph-Hadas, S. Determination and Involvement of Aqueous Reducing Compounds in Oxidative Defense Systems of Various Senescing Leaves. J. Agric. Food Chem. 1995, 43, 1813–1819. [Google Scholar] [CrossRef]
- Ferreira, I.C.; Baptista, P.; Vilas-Boas, M.; Barros, L. Free-Radical Scavenging Capacity and Reducing Power of Wild Edible Mushrooms from Northeast Portugal: Individual Cap and Stipe Activity. Food Chem. 2007, 100, 1511–1516. [Google Scholar] [CrossRef]
- SAS. Statistical Analysis System User’s Guide: Statistical Version, 9th ed.; SAS Institute: Cary, NC, USA, 2003. [Google Scholar]
- Omondi, E.O.; Engels, C.; Nambafu, G.; Schreiner, M.; Neugart, S.; Abukutsa-Onyango, M.; Winkelmann, T. Nutritional Compound Analysis and Morphological Characterization of Spider Plant (Cleome gynandra)—An African Indigenous Leafy Vegetable. Food Res. Int. 2017, 100, 284–295. [Google Scholar] [CrossRef]
- Hutchinson, M.J. The Effect of Farmyard Manure and Calcium Ammonium Nitrate Fertilizers on Micronutrient Density (Iron, Zinc, Manganese, Calcium and Potassium) and Seed Yields of Solanum villosum (Black Nightshade) and Cleome gynandra (Cat’s Whiskers) on Eutric Nitisol. J. Agric. Sci. Technol. 2011, 13, 35–52. [Google Scholar]
- El-Nakhel, C.; Pannico, A.; Graziani, G.; Giordano, M.; Kyriacou, M.C.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Mineral and Antioxidant Attributes of Petroselinum crispum at Different Stages of Ontogeny: Microgreens vs. Baby Greens. Agronomy 2021, 11, 857. [Google Scholar] [CrossRef]
- Mavengahama, S.; de Clercq, W.P.; McLachlan, M. Trace Element Composition of Two Wild Vegetables in Response to Soil-Applied Micronutrients. S. Afr. J. Sci. 2014, 110, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Gharibzahedi, S.M.T.; Jafari, S.M. The Importance of Minerals in Human Nutrition: Bioavailability, Food Fortification, Processing Effects and Nanoencapsulation. Trend. Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Thangwana, A.; Gwata, E.T.; Zhou, M.M. Impact of Chemical Mutagenesis Using Ethyl Methane Sulphonate on Tepary Bean Seedling Vigour and Adult Plant Performance. Heliyon 2021, 7, e06103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Malzahn, A.A.; Sretenovic, S.; Qi, Y. The Emerging and Uncultivated Potential of CRISPR Technology in Plant Science. Nat. Plants 2019, 5, 778–794. [Google Scholar] [CrossRef] [PubMed]
- Neugart, S.; Baldermann, S.; Ngwene, B.; Wasonga, J.; Schreiner, M. Indigenous Leafy Vegetables of Eastern Africa—A Source of Extraordinary Secondary Plant Metabolites. Food Res. Int. 2017, 100, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Ramos, F.A.; Takaishi, Y.; Shirotori, M.; Kawaguchi, Y.; Tsuchiya, K.; Shibata, H. Antibacterial and Antioxidant Activities of Quercetin Oxidation Products from Yellow Onion (Allium cepa) Skin. J. Agric. Food Chem. 2006, 54, 3551–3557. [Google Scholar] [CrossRef]
- Brüll, V.; Burak, C.; Stoffel-Wagner, B.; Wolffram, S.; Nickenig, G.; Müller, C.; Langguth, P.; Alteheld, B.; Fimmers, R.; Naaf, S.; et al. Effects of a Quercetin-rich Onion Skin eExtract on 24 h Ambulatory Blood Pressure and Endothelial Function in Overweight-to-Obese Patients with (pre-)Hypertension: A Randomised Double-Blinded Placebo-Controlled Cross-Over Trial. Br. J Nutr. 2015, 114, 1263–1277. [Google Scholar] [CrossRef] [Green Version]
- David, A.V.A.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn. Rev. 2016, 10, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Al-Zharani, M.; Mubarak, M.; Rudayni, H.A.; Al-Doaiss, A.A.; Abd-Elwahab, M.M.; Al-Eissa, M.S. Quercetin as a Dietary Supplementary Flavonoid Alleviates the Oxidative Stress Induced by Lead Toxicity in Male Wistar Rats. Nutrients 2023, 15, 1888. [Google Scholar] [CrossRef]
- Shahnaz, A.; Khan, K.M.; Sheikh, M.A.; Shahid, M. Effect of Peeling and Cooking on Nutrients in Vegetables. Pak. J. Nutr. 2003, 2, 189–191. [Google Scholar]
- Gupta, S.; Gowri, B.S.; Lakshmi, A.J.; Prakash, J. Retention of Nutrients in Green Leafy Vegetables on Dehydration. J. Food Sci. Technol. 2013, 50, 918–925. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Qin, W.; Fu, X.; Zhang, Y.; Hassani, D.; Kayani, S.I.; Xie, L.; Liu, H.; Chen, T.; Yan, X.; et al. Transcriptomic Analysis Reveals the Parallel Transcriptional Regulation of UV-B-Induced Artemisinin and Flavonoid Accumulation in Artemisia annua L. Plant Physiol. Biochem. 2021, 163, 189–200. [Google Scholar] [CrossRef]
Name of Leafy Vegetable | Notes on Leaf Harvesting | |
---|---|---|
Common | Scientific | |
Cowpea | Vigna anguiculata | Often harvested from a field crop |
Jute mallow | Corchorus olitorius | Harvested from both the wild and field |
Spider plant | Cleome gynandra | Harvested from both the wild and field |
Pumpkin | Cucurbita pepo | Often harvested from a field crop |
‡ Swiss chard | Beta vulgaris L. var. cicla | Exotic; often raised and harvested in the field or gardern |
Variable | Minimum | Maximum | Mean | SD |
---|---|---|---|---|
N (g/kg DW) | 4.97 | 6.14 | 5.36 | 0.50 |
Ca (g/kg DW) | 1.08 | 1.53 | 1.34 | 0.20 |
Mg (g/kg DW | 0.37 | 1.29 | 0.63 | 0.38 |
Zn (mg/kg DW) | 37.05 | 56.12 | 43.76 | 8.04 |
Cu (mg/kg DW) | 10.66 | 18.89 | 14.31 | 3.38 |
Mn (mg/kg DW) | 123.16 | 488.02 | 247.86 | 147.97 |
Fe (mg/kg DW) | 153.51 | 381.48 | 279.44 | 89.61 |
P (g/kg DW) | 0.33 | 0.67 | 0.46 | 0.13 |
Al (mg/kg DW) | 64.13 | 289.76 | 158.39 | 84.00 |
TPC(mg GAE/g) | 0.37 | 0.56 | 0.50 | 0.07 |
TFC (mg QE/g) | 0.79 | 1.57 | 1.15 | 0.32 |
DPPH (%) | 4.87 | 21.35 | 11.85 | 7.17 |
FRAP | 0.51 | 1.21 | 0.84 | 0.31 |
Vegetable | Ca | Mg | N | P | Al | Cu | Fe | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|
mg/kg DW | |||||||||
Cowpea | 15 200.0 a ±7.0 | 3 800.0 c ± 5.0 | 51 200.0 c ± 40.0 | 4 100.0 c ± 2.0 | 124.3 c ± 33.487 | 10.7 d ± 0.144 | 196.7 e ± 47.079 | 264.3 b ± 43.756 | 37.3 c ± 1.818 |
Jute mallow | 10 800.0 b ± 6.0 | 3 700.0 c ± 3.0 | 49 700.0 c ± 38.0 | 4 300.0 c ± 3.0 | 97.0 d ± 5.894 | 14.1 c ± 0.186 | 236.0 d ± 6.619 | 273.3 b ± 1.784 | 37.0 c ± 0.085 |
Pumpkin leaf | 14 000.0 a ± 47.0 | 6 100.0 b ± 25.0 | 55 800.0 b ± 16.0 | 4 400.0 c ± 3.0 | 135.7 c ± 7.233 | 16.3 b ± 0.729 | 342.3 b ± 13.261 | 123.0 c ± 17.951 | 41.0 c ± 0.209 |
Spider plant | 15 300.0 a ± 23.0 | 6 300.0 b ± 2.0 | 61 400.0 a ± 5.0 | 6.800.0 a ± 6.0 | 178.3 b ± 4.020 | 11.6 c ± 0.364 | 289.3 c ± 6.043 | 134.0 c ± 1.968 | 47.0 b ± 1.510 |
Swiss chard | 11 800.0 b ± 55.0 | 11 500.0 a ± 147.0 | 50 000 c ± 15.0 | 3 900.0 c ± 61.0 | 256.3 a ± 31.961 | 18.9 a ± 0.711 | 405.7 a ± 25.279 | 436.3 a ± 52.399 | 56.0 a ± 1.558 |
Code | Name | Molecular Formular | Molecular Weight | Rank | Leafy Vegetable | ||||
---|---|---|---|---|---|---|---|---|---|
Cowpea | Jute Mallow | Pumpkin | Spider Plant | Swiss Chard | |||||
1 | Apiin | C26H28O14 | 563.14 | 11 | - | - | - | - | ++ |
2 | Apigein 7-6″-malonyl neohesperidoside | C30H32O17 | 663.16 | 2 | - | - | - | - | ++ |
3 | Chartreusin | C32H32O14 | 609.14 | 8 | ++ | - | - | - | - |
4 | Crotonoside | C10H13N5O5 | 282.08 | 16 | - | - | - | + | + |
5 | Citric acid | C6H8O7 | 191.02 | 21 | - | - | - | ++ | - |
6 | Isoquercetin/ Quercetin 3′-glucoside | C21H20O12 | 609.14 | 6 | + | + | + | - | - |
7 | Isorhamnetin-3,4′-diglucoside | C28H32O17 | 639.16 | 3 | - | - | - | - | ++ |
8 | Kaempferol 3-O-rutinoside | C27H30015 | 593.16 | 10 | - | - | - | ++ | - |
9 | P-Hydroxyphenyl butazone | C19H20N2O3 | 323.13 | 13 | + | + | - | - | |
10 | Quercetin | C15H1007 | 301.04 | 15 | - | - | - | ++ | - |
11 | Quercetin 3′-glucoside | C21H20O12 | 463.09 | 12 | + | - | - | + | - |
12 | Quercetin 3-methyl ether | C16H12O17 | 315.07 | 14 | - | - | + | + | - |
13 | Quercetin 3-O-rutinoside | C27H30O16 | 609.15 | 4 | + | - | + | + | - |
14 | Quercetin 3-(2G-rhamnosylrutinoside) | C33H40O20 | 755.21 | 1 | - | - | - | ++ | - |
15 | Quercetin 3,4-di-O-glucoside | C27H30O17 | 609.14 | 5 | - | - | - | ++ | - |
16 | Rutin/quercetin 3-O-rutinoside | C27H30O17 | 609.14 | 6 | + | - | + | - | - |
17 | Sucrose | C12H22O11 | 243.06 | 19 | + | - | + | - | - |
18 | Uridine | C9H12N2O6 | 243.06 | 19 | - | - | - | + | + |
19 | Vicenin-1 6″-O-acetate | C28H30O15 | 605.15 | 9 | - | - | - | - | - |
20 | 3-desmethyl 5-deshydroxy seleroin | C14H12O4 | 243.06 | 18 | - | - | ++ | - | - |
21 | 8-hydroxy-2-deoxy guanosine | C10H13N505 | 282.08 | 17 | + | + | + | - | - |
Total | - | - | - | 7 | 2 | 7 | 10 | 5 | |
Unique | - | - | - | 1 | 0 | 1 | 5 | 3 |
Variable | N | Ca | Mg | Zn | Cu | Mn | Fe | P | Al | TPC | TFC | DPPH | FRAP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | 1.000 | ||||||||||||
Ca | 0.681 | 1.000 | |||||||||||
Mg | −0.269 | −0.359 | 1.000 | ||||||||||
Zn | 0.113 | −0.148 | 0.890 * | 1.000 | |||||||||
Cu | −0.349 | −0.620 | 0.841 | 0.620 | 1.000 | ||||||||
Mn | −0.697 | −0.661 | 0.791 | 0.614 | 0.630 | 1.000 | |||||||
Fe | 0.160 | −0.301 | 0.782 | 0.774 | 0.865 | 0.349 | 1.000 | ||||||
P | 0.902 * | 0.566 | −0.516 | −0.081 | −0.605 | −0.695 | −0.146 | 1.000 | |||||
Al | −0.002 | −0.385 | 0.900 * | 0.964 ** | 0.750 | 0.681 | 0.843 | −0.168 | 1.000 | ||||
TPC | −0.239 | −0.275 | 0.213 | 0.379 | −0.139 | 0.592 | −0.184 | 0.036 | 0.362 | 1.000 | |||
TFC | 0.507 | 0.421 | −0.717 | −0.354 | −0.875 | −0.522 | −0.625 | 0.814 | −0.433 | 0.376 | 1.000 | ||
DPPH | −0.240 | 0.176 | −0.709 | −0.690 | −0.821 | −0.206 | −0.983 ** | 0.110 | −0.742 | 0.350 | 0.640 | 1.000 | |
FRAP | 0.935 * | 0.819 | −0.278 | −0.004 | −0.333 | −0.778 | 0.121 | 0.743 | −0.150 | −0.495 | 0.325 | −0.252 | 1.000 |
Variable | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
N | −0.18 | 0.45 | 0.14 | −0.11 |
Ca | −0.25 | 0.26 | 0.01 | 0.72 |
Mg | 0.36 | 0.11 | 0.10 | 0.31 |
Zn | 0.28 | 0.24 | 0.33 | 0.21 |
Cu | 0.36 | 0.09 | −0.18 | −0.18 |
Mn | 0.33 | −0.21 | 0.23 | 0.17 |
Fe | 0.29 | 0.33 | −0.06 | −0.22 |
P | −0.26 | 0.30 | 0.29 | −0.32 |
Al | 0.32 | 0.20 | 0.28 | −0.06 |
TPC | 0.07 | −0.20 | 0.64 | 0.02 |
TFC | −0.31 | 0.00 | 0.40 | −0.23 |
DPPH | −0.26 | −0.37 | 0.15 | 0.16 |
FRAP | −0.19 | 0.45 | −0.06 | 0.17 |
Eigenvalue | 6.77 | 3.59 | 1.98 | 0.65 |
Variability (%) | 52.11 | 27.63 | 15.27 | 5.00 |
Cumulative % | 52.11 | 79.74 | 95.00 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thovhogi, F.; Ntushelo, N.; Gwata, E.T. A Comparative Study of the Presence of Minerals, Flavonoids and Total Phenolic Compounds in the Leaves of Common Traditional Vegetables. Appl. Sci. 2023, 13, 8503. https://doi.org/10.3390/app13148503
Thovhogi F, Ntushelo N, Gwata ET. A Comparative Study of the Presence of Minerals, Flavonoids and Total Phenolic Compounds in the Leaves of Common Traditional Vegetables. Applied Sciences. 2023; 13(14):8503. https://doi.org/10.3390/app13148503
Chicago/Turabian StyleThovhogi, Fhatuwani, Nombasa Ntushelo, and Eastonce T. Gwata. 2023. "A Comparative Study of the Presence of Minerals, Flavonoids and Total Phenolic Compounds in the Leaves of Common Traditional Vegetables" Applied Sciences 13, no. 14: 8503. https://doi.org/10.3390/app13148503
APA StyleThovhogi, F., Ntushelo, N., & Gwata, E. T. (2023). A Comparative Study of the Presence of Minerals, Flavonoids and Total Phenolic Compounds in the Leaves of Common Traditional Vegetables. Applied Sciences, 13(14), 8503. https://doi.org/10.3390/app13148503