Control of a Novel Parallel Mechanism for the Stabilization of Unmanned Aerial Vehicles
Abstract
:1. Introduction
2. Model Identification of 3-SRR/SRU
2.1. Mathematical Model
2.2. Existing Control Strategy
2.3. Simscape Modeling and Validation
3. PID Control of the Dynamical Model
3.1. 3D Simulation
3.2. Proposed Control Strategy
4. Alternative Solutions for UAV Stabilizing Mechanism
4.1. 3-RRS PM
4.2. Proposed Mechanism: 3-SRR PM
4.3. Comparison of 3-SRR and 3-SRR/SRU PMs
5. Artificial Neural Network
5.1. Obtaining Design Parameters
5.2. Neural Network
5.3. Results from ANN
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borghetti, F.; Caballini, C.; Carboni, A.; Grossato, G.; Maja, R.; Barabino, B. The Use of Drones for Last-Mile Delivery: A Numerical Case Study in Milan, Italy. Sustainability 2022, 14, 1766. [Google Scholar] [CrossRef]
- Merkert, R.; Bushell, J. Managing the Drone Revolution: A Systematic Literature Review into the Current Use of Airborne Drones and Future Strategic Directions for Their Effective Control. J. Air Transp. Manag. 2020, 89, 101929. [Google Scholar] [CrossRef] [PubMed]
- Benarbia, T.; Kyamakya, K. A Literature Review of Drone-Based Package Delivery Logistics Systems and Their Implementation Feasibility. Sustainability 2022, 14, 360. [Google Scholar] [CrossRef]
- Urbina-Brito, N.; Guerrero-Sánchez, M.-E.; Valencia-Palomo, G.; Hernández-González, O.; López-Estrada, F.-R.; Hoyo-Montaño, J.A. A Predictive Control Strategy for Aerial Payload Transportation with an Unmanned Aerial Vehicle. Mathematics 2021, 9, 1822. [Google Scholar] [CrossRef]
- Guerrero-Sánchez, M.E.; Hernández-González, O.; Valencia-Palomo, G.; Mercado-Ravell, D.A.; López-Estrada, F.R.; Hoyo-Montaño, J.A. Robust IDA-PBC for under-Actuated Systems with Inertia Matrix Dependent of the Unactuated Coordinates: Application to a UAV Carrying a Load. Nonlinear Dyn. 2021, 105, 3225–3238. [Google Scholar] [CrossRef]
- Patel, Y.D.; George, P.M. Parallel Manipulators Applications—A Survey. Mod. Mech. Eng. 2012, 2, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lyu, C.; Liu, J. Kinematic Analysis and Verification of a New 5-DOF Parallel Mechanism. Appl. Sci. 2021, 11, 8157. [Google Scholar] [CrossRef]
- Wang, L.; Wang, D.; Wu, J. Dynamic Performance Analysis of Parallel Manipulators Based on Two-Inertia-System. Mech. Mach. Theory 2019, 137, 237–253. [Google Scholar] [CrossRef]
- Alkhedher, M.; Younes, T.; Mohamad, O.; Ali, U. Adaptive 6 DOF Self-Balancing Platform for Autonomous Vehicles. Int. J. Comput. Digit. Syst. 2020, 9, 69–75. [Google Scholar] [CrossRef]
- Zhan, Y.; Tian, H.; Xu, J.; Wu, S.; Fu, J. A Novel Three-SPR Parallel Platform for Vessel Wave Compensation. J. Mar. Sci. Eng. 2020, 8, 1013. [Google Scholar] [CrossRef]
- Talke, K.; Drotman, D.; Stroumtsos, N.; de Oliveira, M.; Bewley, T. Design and Parameter Optimization of a 3-PSR Parallel Mechanism for Replicating Wave and Boat Motion. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; IEEE: New York, NY, USA, 2019; pp. 7955–7961. [Google Scholar]
- Javadi, M.; Afzalpour, N.; Taayemeh, P.J.; Khorsandijou, S.M. Wheelchair Stabilization by the Control of a Spatial 3-RRS Mechanism. Iran. J. Mech. Eng. Trans. ISME 2016, 17, 84–100. [Google Scholar]
- Tetik, H.; Kalla, R.; Kiper, G.; Bandyopadhyay, S. Position Kinematics of a 3-RRS Parallel Manipulator. In ROMANSY 21—Robot Design, Dynamics and Control; Parenti-Castelli, V., Schiehlen, W., Eds.; CISM International Centre for Mechanical Sciences, Courses and Lectures; Springer International Publishing: Cham, Switzerland, 2016; Volume 569, pp. 65–72. ISBN 978-3-319-33713-5. [Google Scholar]
- Zhang, B.; Shang, W. Kinematic Control of a 3-DOF Parallel Stabilization Platform. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014; IEEE: New York, NY, USA, 2014; pp. 8287–8292. [Google Scholar]
- Bennet, S. A Brief History of Automatic Control. IEEE Control Syst. 1996, 16, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Ang, K.H.; Chong, G.; Li, Y. PID Control System Analysis, Design, and Technology. IEEE Trans. Control Syst. Technol. 2005, 13, 559–576. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, J.G.; Nichols, N.B. Optimum Settings for Automatic Controllers. J. Dyn. Syst. Meas. Control 1993, 115, 220–222. [Google Scholar] [CrossRef] [Green Version]
- Portillo, J.; Marcos, M.; Orive, D.; López, F.; Pérez, F. PID_ATC: A Real-Time Tool for PID Control and Auto-Tuning. IFAC Proc. Vol. 1998, 31, 41–46. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Jang, D.-W. Optimization of Neural Network-Based Self-Tuning PID Controllers for Second Order Mechanical Systems. Appl. Sci. 2021, 11, 8002. [Google Scholar] [CrossRef]
- Starr, K.D.; Petersen, H.; Bauer, M. Control Loop Performance Monitoring—ABB’s Experience over Two Decades. IFAC-Pap. 2016, 49, 526–532. [Google Scholar] [CrossRef]
- Berner, J.; Soltesz, K.; Hägglund, T.; Åström, K.J. An Experimental Comparison of PID Autotuners. Control Eng. Pract. 2018, 73, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Mokhiamar, O.; Abe, M. Experimental Verification Using a Driving Simulator of the Effect of Simultaneous Optimal Distribution of Tyre Forces for Active Vehicle Handling Control. Proc. Inst. Mech. Eng. Part D Automob. Eng. 2005, 219, 135–149. [Google Scholar] [CrossRef]
- Davidson, R.A.; Ushakumari, S. H-Infinity Loop-Shaping Controller for Load Frequency Control of a Deregulated Power System. Procedia Technol. 2016, 25, 775–784. [Google Scholar] [CrossRef] [Green Version]
- Amine, S.; Mokhiamar, O. A Study of Stability and Power Consumption of Electric Vehicles Using Different Modern Control Strategies. Alex. Eng. J. 2019, 58, 1281–1290. [Google Scholar] [CrossRef]
- Darwiche, M.; Mokhiamar, O. SVR Approach for Predicting Vehicle Velocity for Comfortable Ride While Crossing Speed Humps. Alex. Eng. J. 2022, 61, 6119–6128. [Google Scholar] [CrossRef]
- Jung, S.; Kim, S.S. Control Experiment of a Wheel-Driven Mobile Inverted Pendulum Using Neural Network. IEEE Trans. Control Syst. Technol. 2008, 16, 297–303. [Google Scholar] [CrossRef]
- Sun, Q.; Du, C.; Duan, Y.; Ren, H.; Li, H. Design and Application of Adaptive PID Controller Based on Asynchronous Advantage Actor–Critic Learning Method. Wirel. Netw. 2021, 27, 3537–3547. [Google Scholar] [CrossRef] [Green Version]
- Danh, N.C. Neural Networks Application for the Data of PID Controller for Acrobot. Sci. World J. 2022, 2022, e9162352. [Google Scholar] [CrossRef]
- Ghoniem, M.; Awad, T.; Mokhiamar, O. Control of a New Low-Cost Semi-Active Vehicle Suspension System Using Artificial Neural Networks. Alex. Eng. J. 2020, 59, 4013–4025. [Google Scholar] [CrossRef]
- Rahimi, S.; Jalali, H.; Hairi Yazdi, M.R.; Kalhor, A.; Tale Masouleh, M. Design and Practical Implementation of a Neural Network Self-Tuned Inverse Dynamic Controller for a 3-DoF Delta Parallel Robot Based on Arc Length Function for Smooth Trajectory Tracking. Mechatronics 2022, 84, 102772. [Google Scholar] [CrossRef]
- Minh Nguyet, N.T.; Ba, D.X. A Neural Flexible PID Controller for Task-Space Control of Robotic Manipulators. Front. Robot. AI 2023, 9, 975850. [Google Scholar] [CrossRef]
- Matrice 200 Series V2—Product Information—DJI. Available online: https://www.dji.com/global/matrice-200-series-v2/info (accessed on 19 July 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamas, M.H.; Amine, S.; Gazo Hanna, E.; Mokhiamar, O. Control of a Novel Parallel Mechanism for the Stabilization of Unmanned Aerial Vehicles. Appl. Sci. 2023, 13, 8740. https://doi.org/10.3390/app13158740
Chamas MH, Amine S, Gazo Hanna E, Mokhiamar O. Control of a Novel Parallel Mechanism for the Stabilization of Unmanned Aerial Vehicles. Applied Sciences. 2023; 13(15):8740. https://doi.org/10.3390/app13158740
Chicago/Turabian StyleChamas, Mohamad Haidar, Semaan Amine, Eddie Gazo Hanna, and Ossama Mokhiamar. 2023. "Control of a Novel Parallel Mechanism for the Stabilization of Unmanned Aerial Vehicles" Applied Sciences 13, no. 15: 8740. https://doi.org/10.3390/app13158740
APA StyleChamas, M. H., Amine, S., Gazo Hanna, E., & Mokhiamar, O. (2023). Control of a Novel Parallel Mechanism for the Stabilization of Unmanned Aerial Vehicles. Applied Sciences, 13(15), 8740. https://doi.org/10.3390/app13158740