Impact of Air- and Freeze-Drying Methods on Total Phenolic Content and Antioxidant Activity of Fistulina antarctica and Ramaria patagonica Fructification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Moisture Content
2.3. Drying Process
2.4. Preparation of Extracts of Bioactive Compounds
2.5. Total Phenolic Content (TPC)
2.6. Evaluation of Antioxidant Activity
2.6.1. ABTS Radical Scavenging Activity
2.6.2. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Activity
2.6.3. Ferric-Reducing Antioxidant Power Assay (FRAP)
2.6.4. Inhibition of Lipid Peroxidation (LIP)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Moisture Contents and Air-Drying Behavior
3.2. Effect on Total Phenolic Content
3.3. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barroetaveña, C.; Toledo, C.V. Diversity and Ecology of Edible Mushrooms from Patagonia Native Forests, Argentina, in Mushrooms, Humans and Nature in a Changing World: Perspectives from Ecological, Agricultural and Social Sciences; Perez-Moreno, J., Guerin Laguette, A., Flores Arzú, R., Yu, F.Q., Eds.; Springer International Publishing: Cham, Switzerland; pp. 297–318.
- Molares, S.; Toledo, C.V.; Stecher, G.; Barroetaveña, C. Traditional mycological knowledge and processes of change in Mapuche communities from Patagonia, Argentina: A study on wild edible fungi in Nothofagaceae forests. Mycologia 2020, 112, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Toledo, C.V.; Barroetaveña, C.; Fernandes, Â.; Barros, L.; Ferreira, I.C.F.R. Chemical and antioxidant properties of wild edible mushrooms from native Nothofagus spp. forest, Argentina. Molecules 2016, 21, 1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacinto-Azevedo, B.; Valderrama, N.; Henríquez, K.; Aranda, M.; Aqueveque, P. Nutritional value and biological properties of Chilean wild and commercial edible mushrooms. Food Chem. 2021, 356, 129651. [Google Scholar] [CrossRef] [PubMed]
- Rugolo, M.; Spréa, R.M.; Dias, M.I.; Pires, T.C.S.P.; Añibarro-Ortega, M.; Barroetaveña, C.; Caleja, C.; Barros, L. Nutritional Composition and Bioactive Properties of Wild Edible Mushrooms from Native Nothofagus Patagonian Forests. Foods 2022, 11, 3516. [Google Scholar] [CrossRef] [PubMed]
- Souilem, F.; Fernandes, Â.; Calhelha, R.C.; Barreira, J.C.; Barros, L.; Skhiri, F.; Martins, A.; Ferreira, I.C. Wild mushrooms and their mycelia as sources of bioactive compounds: Antioxidant, anti-inflammatory and cytotoxic properties. Food Chem. 2017, 230, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Gąsecka, M.; Siwulski, M.; Magdziak, Z.; Budzyńska, S.; Stuper-Szablewska, K.; Niedzielski, P.; Mleczek, M. The effect of drying temperature on bioactive compounds and antioxidant activity of Leccinum scabrum (Bull.) Gray and Hericium erinaceus (Bull.) Pers. J. Food Sci. Technol. 2019, 57, 513–525. [Google Scholar] [CrossRef] [Green Version]
- Barros, L.; Cruz, T.; Baptista, P.; Estevinho, L.M.; Ferreira, I.C. Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem. Toxicol. 2008, 46, 2742–2747. [Google Scholar] [CrossRef]
- Kumar, K.; Mehra, R.; Guiné, R.P.F.; Lima, M.J.; Kumar, N.; Kaushik, R.; Ahmed, N.; Yadav, A.N.; Kumar, H. Edible Mushrooms: A Comprehensive Review on Bioactive Compounds with Health Benefits and Processing Aspects. Foods 2021, 10, 2996. [Google Scholar] [CrossRef]
- Castellanos-Reyes, K.; Villalobos-Carvajal, R.; Beldarrain-Iznaga, T. Fresh Mushroom Preservation Techniques. Foods 2021, 10, 2126. [Google Scholar] [CrossRef]
- Dawadi, E.; Magar, P.B.; Bhandari, S.; Subedi, S.; Shrestha, S.; Shrestha, J. Nutritional and post-harvest quality preservation of mushrooms: A review. Heliyon 2022, 8, 12093. [Google Scholar] [CrossRef]
- Barros, L.; Baptista, P.; Correia, D.M.; Morais, J.S.; Ferreira, I.C.F.R. Effects of Conservation Treatment and Cooking on the Chemical Composition and Antioxidant Activity of Portuguese Wild Edible Mushrooms. J. Agric. Food Chem. 2007, 55, 4781–4788. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, Â.; Barros, L.; Barreira, J.C.; Antonio, A.L.; Oliveira, M.B.P.; Martins, A.; Ferreira, I.C. Effects of different processing technologies on chemical and antioxidant parameters of Macrolepiota procera wild mushroom. LWT-Food Sci. Technol. 2013, 54, 493–499. [Google Scholar] [CrossRef]
- Zhang, K.; Pu, Y.-Y.; Sun, D.-W. Recent advances in quality preservation of postharvest mushrooms (Agaricus bisporus): A review. Trends Food Sci. Technol. 2018, 78, 72–82. [Google Scholar] [CrossRef]
- Barroetaveña, C.; López, S.; Pildain, M.B. Cocinar Con Hongos Silvestres, Descripción Nutricional, Propiedades, Modos de Consumo y Preservación de Los Hongos Silvestres de Patagonia; Centro forestal CIEFAP: Esquel, Argentina, 2020; p. 85. [Google Scholar]
- Pei, F.; Yang, W.-J.; Shi, Y.; Sun, Y.; Mariga, A.M.; Zhao, L.-Y.; Fang, Y.; Ma, N.; An, X.-X.; Hu, Q.-H. Comparison of Freeze-Drying with Three Different Combinations of Drying Methods and Their Influence on Colour, Texture, Microstructure and Nutrient Retention of Button Mushroom (Agaricus bisporus) Slices. Food Bioprocess. Technol. 2014, 7, 702–710. [Google Scholar] [CrossRef]
- Yadav, D.; Negi, P.S. Bioactive components of mushrooms: Processing effects and health benefits. Food Res. Int. 2021, 148, 110599. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.; Prasad, S. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. J. Food Eng. 2007, 78, 512–521. [Google Scholar] [CrossRef]
- Pendre, N.K.; Nema, P.K.; Sharma, H.P.; Rathore, S.S.; Kushwah, S.S. Effect of drying temperature and slice size on quality of dried okra (Abelmoschus esculentus (L.) Moench). J. Food Sci. Technol. 2011, 49, 378–381. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Fang, X.; Wu, W.; Chen, H.; Mu, H.; Gao, H. Effects of high-temperature pre-drying on the quality of air-dried shiitake mushrooms (Lentinula edodes). Food Chem. 2019, 285, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Kotwaliwale, N.; Bakane, P.; Verma, A. Changes in textural and optical properties of oyster mushroom during hot air drying. J. Food Eng. 2007, 78, 1207–1211. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Mujumdar, A.S. Comparison of Three New Drying Methods for Drying Characteristics and Quality of Shiitake Mushroom (Lentinus edodes). Dry. Technol. 2014, 32, 1791–1802. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Kong, Y.; Zhao, J.; Sun, Y.; Huang, M. Comparative analysis of taste compounds in shiitake mushrooms processed by hot-air drying and freeze drying. Int. J. Food Prop. 2019, 22, 1100–1111. [Google Scholar] [CrossRef]
- Huang, L.-L.; Zhang, M.; Wang, L.-P.; Mujumdar, A.S.; Sun, D.-F. Influence of combination drying methods on composition, texture, aroma and microstructure of apple slices. LWT Food Sci. Technol. 2012, 47, 183–188. [Google Scholar] [CrossRef]
- Huang, L.-L.; Zhang, M.; Mujumdar, A.S.; Lim, R.-X. Comparison of four drying methods for re-structured mixed potato with apple chips. J. Food Eng. 2011, 103, 279–284. [Google Scholar] [CrossRef]
- Valiente, L.; Ohaco, E.; Michelis, A. Antioxidant capacity of frozen Pleurotus ostreatus during convective drying. Micol. Apl. Int. 2016, 28, 1–10. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Gąsecka, M.; Mleczek, M.; Siwulski, M.; Niedzielski, P.; Kozak, L. The effect of selenium on phenolics and flavonoids in selected edible white rot fungi. LWT-Food Sci. Technol. 2015, 63, 726–731. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; Niksic, M.; Jakovljevic, D.; Helsper, J.P.; Van Griensven, L.J. Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chem. 2011, 129, 1667–1675. [Google Scholar] [CrossRef]
- Lingnert, H.; Vallentin, K.; Eriksson, C.E. Measurement of Antioxidative Effect in Model System. J. Food Process. Preserv. 1979, 3, 87–103. [Google Scholar] [CrossRef]
- Heleno, S.A.; Barros, L.; Sousa, M.J.; Martins, A.; Ferreira, I.C. Study and characterization of selected nutrients in wild mushrooms from Portugal by gas chromatography and high performance liquid chromatography. Microchem. J. 2009, 93, 195–199. [Google Scholar] [CrossRef]
- Pereira, E.; Barros, L.; Martins, A.; Ferreira, I.C. Towards chemical and nutritional inventory of Portuguese wild edible mushrooms in different habitats. Food Chem. 2012, 130, 394–403. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Zhao, Y.; Huang, J.; Zeng, H.; Zheng, B. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms. Food Chem. 2016, 197, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Venturini, B.A.; Baptista, P.; Estevinho, L.M.; Ferreira, I.C.F.R. Chemical Composition and Biological Properties of Portuguese Wild Mushrooms: A Comprehensive Study. J. Agric. Food Chem. 2008, 56, 3856–3862. [Google Scholar] [CrossRef] [PubMed]
- Ouzouni, P.K.; Petridis, D.; Koller, W.-D.; Riganakos, K.A. Nutritional value and metal content of wild edible fungi collected from west Macedonia and Epirus, Greece. Food Chem. 2009, 115, 1575–1580. [Google Scholar] [CrossRef]
- İzli, N.; Yıldız, G.; Ünal, H.; Işık, E.; Uylaşer, V. Effect of different drying methods on drying characteristics, colour total phenolic content and antioxidant capacity of Goldenberry (Physalis peruviana L.). Int. J. Food Sci. Technol. 2014, 49, 9–17. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Srivastav, P.P.; Mishra, H.N. Thin-layer modeling of convective and microwave-convective drying of oyster mushroom (Pleurotus ostreatus). J. Food Sci. Technol. 2015, 52, 2013–2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2016, 19, 669–675. [Google Scholar] [CrossRef]
- Castada, H.Z.; Sun, Z.; Barringer, S.A.; Huang, X. Thermal degradation of p-Hydroxybenzoic acid in Macadamia Nut oil, olive oil, and corn oil. J. Am. Oil Chem. Soc. 2020, 93, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Radzki, W.; Slawinska, A.; Jablonska-Rys, E.; Gustaw, W. Antioxidant Capacity and Polyphenolic Content of Dried Wild Edible Mushrooms from Poland. Int. J. Med. Mushrooms 2014, 16, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Amezquita, L.; Welti-Chanes, J.; Vergara-Balderas, F.; Bermudez-Aguirre, D. Freeze-Drying: The Basic Process in Encyclopedia of Food and Health; Caballero, B., Finglas, P., Toldra, F., Eds.; Academic Press: New York, NY, USA, 2016; pp. 104–109. [Google Scholar]
- Jaworska, G.; Pogoń, K.; Bernaś, E.; Skrzypczak, A. Effect of Different Drying Methods and 24-Month Storage on Water Activity, Rehydration Capacity, and Antioxidants in Boletus edulis Mushrooms. Dry. Technol. 2014, 32, 291–300. [Google Scholar] [CrossRef]
- Lidhoo, C.K.; Agrawal, Y.C. Optimizing temperature in mushrooms drying. J. Food Process. Preserv. 2008, 32, 881–897. [Google Scholar] [CrossRef]
- Liaotrakoon, W.; Liaotrakoon, V. Influence of drying process on total phenolics, antioxidative activity and selected physical properties of edible bolete (Phlebopus colossus (R. Heim) Singer) and changes during storage. Food Sci. Technol. 2018, 38, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Sim, K.Y.; Liew, J.Y.; Ding, X.Y.; Choong, W.S.; Intan, S. Effect of vacuum and oven drying on the radical scavenging activity and nutritional contents of submerged fermented Maitake (Grifola frondosa) mycelia. Food Sci. Technol. 2017, 37, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Reid, T.; Merjury, M.; Takafira, M. Effect of cooking and preservation on nutritional and phytochemical composition of the mushroom Amanita zambian. Food Sci. Nutr. 2017, 5, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, B.; Valentão, P.; Baptista, P.; Seabra, R.M.; Andrade, P.B. Phenolic compounds, organic acids profiles and antioxidative properties of beefsteak fungus (Fistulina hepatica). Food Chem. Toxicol. 2007, 45, 1805–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
50 °C | 60 °C | 70 °C | |
---|---|---|---|
F. antarctica | 9.75 ± 1.06 b | 7.37 ± 0.53 b | 3.62 ± 0.17 a |
R. patagonica | 3.87 ± 0.18 b | 2.37 ± 0.70 b | 1.62 ± 0.77 a |
TPC (mg GAE/mg Extract) | ABTS (% of Inhibition) | DPPH RSA (%) | FRAP (mg AAE/100 mL) | ILP (%) | ||
---|---|---|---|---|---|---|
t 24 | t 48 | |||||
F. antarctica | ||||||
Fresh-frozen | 7.93 ± 0.64 c | 79.75 ± 0.58 bc | 68.94 ± 1.99 c | 43.01 ± 0.21 ab | 39.02 ± 1.30 a | 27.71 ± 0.80 a |
50 °C | 5.03 ± 0.20 a | 63.00 ± 3.77 a | 47.21 ± 4.75 b | 24.77 ± 6.28 ab | nd | nd |
60 °C | 5.57 ± 0.10 b | 70.73 ± 7.90 ab | 48.39 ± 0.44 b | 32.86 ± 2.50 ab | nd | nd |
70° C | 4.80 ± 0.11 a | 57.05 ± 1.74 a | 24.31 ± 0.55 a | 24.58 ± 1.99 a | nd | nd |
Freeze-dried | 8.66 ± 0.16 d | 82.35 ± 0.11 c | 43.41 ± 7.64 b | 38.88 ± 1.20 a | 37.36 ± 0.90 a | 22.62 ± 0.58 c |
R. patagonica | ||||||
Fresh-frozen | 14.78 ± 0.09 b | 99.03 ± 0.87 b | 99.31 ± 4.23 b | 98.08 ± 0.70 d | 97.72 ± 0.90 c | 99.03 ± 0.87 b |
50 °C | 9.54 ± 0.43 a | 90.77 ± 1.06 a | 81.25 ± 1.66 a | 72.90 ± 6.64 a | 86.57 ± 0.80 cd | 81.82 ± 0.20 b |
60 °C | 13.67 ± 0.43 b | 91.59 ± 1.83 a | 82.58 ± 0.66 a | 97.60 ± 2.28 b | 93.09 ± 1.30 bc | 85.52 ± 1.20 a |
70 °C | 11.11 ± 0.34 a | 92.83 ± 0.29 a | 81.57 ± 0.55 a | 89.02 ± 8.90 ab | 82.79 ± 0.90 a | 83.51 ± 2.10 a |
Freeze-dried | 10.52 ± 0.53 a | 90.01 ± 1.16 a | 82.43 ± 0.44 a | 96.54 ± 2.06 b | 92.51 ± 0.80 b | 99.55 ± 1.20 c |
Mushroom | Drying Methods | Reduction in TPC (%) (Compared to Fresh Frozen) | Reduction in Antioxidant Activity (%) (Compared to Fresh Frozen) | ||||
---|---|---|---|---|---|---|---|
ABTS | DPPH | FRAP | ILP | ||||
t 24 | t48 | ||||||
F. antarctica | 50 °C | 36.57 | 21.00 | 31.52 | 43.33 | nd | nd |
60 °C | 29.76 | 11.31 | 29.80 | 23.59 | nd | nd | |
70 °C | 39.47 | 28.46 | 64.73 | 42.85 | nd | nd | |
Freeze-dried | nrd | nrd | 37.03 | 9.60 | 4.25 | 19.34 | |
R. patagonica | 50 °C | 35.45 | 8.34 | 18.18 | 25.67 | 11.41 | 17.38 |
60 °C | 7.51 | 7.51 | 16.84 | 0.49 | 4.73 | 13.64 | |
70 °C | 24.83 | 6.26 | 17.86 | 9.23 | 15.28 | 15.67 | |
Freeze-dried | 28.82 | 9.11 | 16.99 | 1.57 | 5.33 | nrd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, G.C.; Rugolo, M.; Finimundy, T.C.; Ohaco, E.; Pildain, M.B.; Barroetaveña, C. Impact of Air- and Freeze-Drying Methods on Total Phenolic Content and Antioxidant Activity of Fistulina antarctica and Ramaria patagonica Fructification. Appl. Sci. 2023, 13, 8873. https://doi.org/10.3390/app13158873
González GC, Rugolo M, Finimundy TC, Ohaco E, Pildain MB, Barroetaveña C. Impact of Air- and Freeze-Drying Methods on Total Phenolic Content and Antioxidant Activity of Fistulina antarctica and Ramaria patagonica Fructification. Applied Sciences. 2023; 13(15):8873. https://doi.org/10.3390/app13158873
Chicago/Turabian StyleGonzález, Gabriela C., Maximiliano Rugolo, Tiane C. Finimundy, Elizabeth Ohaco, Maria B. Pildain, and Carolina Barroetaveña. 2023. "Impact of Air- and Freeze-Drying Methods on Total Phenolic Content and Antioxidant Activity of Fistulina antarctica and Ramaria patagonica Fructification" Applied Sciences 13, no. 15: 8873. https://doi.org/10.3390/app13158873
APA StyleGonzález, G. C., Rugolo, M., Finimundy, T. C., Ohaco, E., Pildain, M. B., & Barroetaveña, C. (2023). Impact of Air- and Freeze-Drying Methods on Total Phenolic Content and Antioxidant Activity of Fistulina antarctica and Ramaria patagonica Fructification. Applied Sciences, 13(15), 8873. https://doi.org/10.3390/app13158873