GLCM-Based FBLS: A Novel Broad Learning System for Knee Osteopenia and Osteoprosis Screening in Athletes
Abstract
:1. Introduction
- (1)
- To the best of our knowledge, it is for the first time that the FBLS is utilized for the screening of osteopenia and osteoporosis for athletes based on X-ray images. With significant advantages in uncertain and non-linear modeling and rapid calculation ability, the FBLS is a potentially alternative approach for regular testing of osteopenia and osteoporosis for athletes.
- (2)
- A novel GLCM-based fuzzy broad learning system (GLCM-based FBLS) is first proposed for superior classification performance. Effective features are extracted through the use of gray-level co-occurrence matrix and then combined with the fuzzy systems. The feature extraction method with the GLCM can provide the fuzzy systems with detailed texture information. The fuzzy systems in the proposed model can handle uncertain or incomplete features in the learning process, contributing to higher screening accuracy.
- (3)
- We compare the proposed GLCM-based FBLS with three State-of-the-Art CNN models to analyze the advantages of using the proposed model in athletes’ osteoporosis screening application. Based on deep learning, the CNN models have achieved significant progress in the field of osteopenia and osteoporosis automatic screening for athletes. This paper offers a new way to achieve better screening performance without numerous parameters and deep architecture.
2. Materials and Methods
2.1. Existing Screening Methods for Osteoporosis in Athletes
2.2. Proposed Methods
2.2.1. Data Pre-Processing
2.2.2. GLCM Feature Extraction
Contrast
Angular Second Moment (Energy)
Inverse Different Moment
Correlation
2.2.3. Fuzzy Broad Learning System Architecture
3. Results
3.1. State-of-the-Art CNN Models for Automatic Screening of Athletes Osteopenia and Osteoporosis
3.1.1. ResNet
3.1.2. DenseNet
3.1.3. EfficientNet
3.2. Experimental Settings
3.3. Results Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet 2019, 393, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Broken Bones. Broken Lives: A Roadmap to Solve the Fragility Fracture Crisis in Europe; International Osteoporosis Foundation: Nyon, Switzerland, 2018. [Google Scholar]
- Anil, G.; Guglielmi, G.; Peh, W.C.G. Radiology of osteoporosis. Radiol. Clin. 2010, 48, 497–518. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.K.; Ha, H.I.; Park, S.Y.; Han, J. Prediction of femoral osteoporosis using machine-learning analysis with radiomics features and abdomenpelvic CT: A retrospective single center preliminary study. PLoS ONE 2021, 16, e0247330. [Google Scholar]
- Sebro, R.; Elmahdy, M. Machine learning for opportunistic screening for osteoporosis and osteopenia using knee CT scans. Can. Assoc. Radiol. J. 2023. [Google Scholar] [CrossRef] [PubMed]
- Park, H.W.; Jung, H.; Back, K.Y.; Choi, H.J.; Ryu, K.S.; Cha, H.S.; Lee, E.K.; Hong, A.R.; Hwangbo, Y. Application of machine learning to identify clinically meaningful risk group for osteoporosis in individuals under the recommended age for dual-energy X-ray absorptiometry. Calcif. Tissue Int. 2021, 109, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25. [Google Scholar]
- Fang, Y.; Li, W.; Chen, X.; Chen, K.; Kang, H.; Yu, P.; Zhang, R.; Liao, J.; Hong, G.; Li, S. Opportunistic osteoporosis screening in multi-detector ct images using deep convolutional neural networks. Eur. Radiol. 2021, 31, 1831–1842. [Google Scholar] [CrossRef] [PubMed]
- Pickhardt, P.J.; Nguyen, T.; Perez, A.A.; Graffy, P.M.; Jang, S.; Summers, R.M.; Garrett, J.W. Improved ct-based osteoporosis assessment with a fully automated deep learning tool. Radiol. Artif. Intell. 2022, 4, e220042. [Google Scholar] [CrossRef] [PubMed]
- Tomita, N.; Cheung, Y.Y.; Hassanpour, S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on ct scans. Comput. Biol. Med. 2018, 98, 8–15. [Google Scholar] [CrossRef]
- Wu, G.; Duan, J. Blcov: A novel collaborative–competitive broad learning system for covid-19 detection from radiology images. Eng. Appl. Artif. Intell. 2022, 115, 105323. [Google Scholar] [CrossRef]
- Chen, C.L.P.; Liu, Z. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 10–24. [Google Scholar] [CrossRef]
- Zebari, R.; Abdulazeez, A.; Zeebaree, D.; Zebari, D.; Saeed, J. A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction. J. Appl. Sci. Technol. Trends 2020, 1, 56–70. [Google Scholar] [CrossRef]
- Zulpe, N.; Pawar, V. Glcm textural features for brain tumor classification. Int. J. Comput. Sci. Issues (IJCSI) 2012, 9, 354. [Google Scholar]
- Wilson, D.J. Osteoporosis and sport. Eur. J. Radiol. 2019, 110, 169–174. [Google Scholar] [CrossRef]
- Adams, J.E. Advances in bone imaging for osteoporosis. Nat. Rev. Endocrinol. 2013, 9, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Schousboe, J.T.; Ensrud, K.E. Opportunistic osteoporosis screening using low-dose computed tomography (ldct): Promising strategy, but challenges remain. J. Bone Miner. Res. 2021, 36, 425–426. [Google Scholar] [CrossRef] [PubMed]
- Mithal, A.; Ebeling, P. International Osteoporosis Foundation. The Asian Pacific Regional Audit: Epidemiology, Costs & Burden of Osteoporosis in 2013; International Osteoporosis Foundation: Nyon, Switzerland, 2013. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114. [Google Scholar]
- Iandola, F.; Moskewicz, M.; Karayev, S.; Girshick, R.; Darrell, T.; Keutzer, K. Densenet: Implementing efficient convnet descriptor pyramids. arXiv 2014, arXiv:1404.1869. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. Smote: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Wani, I.M.; Arora, S. Knee X-ray Osteoporosis Database. Mendeley Data 2021. [Google Scholar] [CrossRef]
- Gonzales, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using MATLAB; Pearson Prentice Hall: Hoboken, NJ, USA, 2004. [Google Scholar]
- Zuiderveld, K. Contrast limited adaptive histogram equalization. In Graphics Gems; Elsevier: Amsterdam, The Netherlands, 1994; pp. 474–485. [Google Scholar]
- Shirvaikar, M.; Huang, N.; Dong, X.N. The measure- ment of bone quality using gray level co-occurrence matrix textural fea- tures. J. Med. Imaging Health Inform. 2016, 6, 1357–1362. [Google Scholar] [CrossRef]
- Hu, S.; Xu, C.; Guan, W.; Tang, Y.; Liu, Y. Texture feature extraction based on wavelet transform and gray-level co-occurrence matrices applied to osteosarcoma diagnosis. Biomed. Mater. Eng. 2014, 24, 129–143. [Google Scholar] [CrossRef]
- Areeckal, A.S.; Kamath, J.; Zawadynski, S.; Kocher, M. Combined radiogrammetry and texture analysis for early diagnosis of osteoporosis using indian and swiss data. Comput. Med. Imaging Graph. 2018, 68, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, Y.; Fujita, A.; Buch, K.; Li, B.; Qureshi, M.M.; Chapman, M.N.; Sakai, O. Using textureanalysis of head ct images to differentiate osteoporosis from normal bone density. Eur. J. Radiol. 2019, 116, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Mookiah, M.R.K.; Rohrmeier, A.; Dieckmeyer, M.; Mei, K.; Kopp, F.K.; Noel, P.B.; Kirschke, J.S.; Baum, T.; Subburaj, K. Feasibility of opportunistic osteo- porosis screening in routine contrast-enhanced multi detector computed tomography (mdct) using texture analysis. Osteoporos. Int. 2018, 29, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Nardone, V.; Tini, P.; Croci, S.; Carbone, S.F.; Sebaste, L.; Carfagno, T.; Battaglia, G.; Pastina, P.; Rubino, G.; Mazzei, M.A.; et al. 3d bone texture analysis as a potential predictor of radiation-induced insufficiency fractures. Quant. Imaging Med. Surg. 2018, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Chen, C.L.P. Fuzzy broad learning system: A novel neuro-fuzzy model for regression and classification. IEEE Trans. Cybern. 2018, 50, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Kim, M.; Bae, S.J.; Lee, S.H.; Koh, J.M.; Kim, N. Opportunistic Osteoporosis Screening Using Chest Radiographs with Deep Learning: Development and External Validation With a Cohort Dataset. J. Bone Miner. Res. 2022, 37, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Jang, R.; Choi, J.H.; Kim, N.; Chang, J.S.; Yoon, P.W.; Kim, C.H. Prediction of osteoporosis from simple hip radiography using deep learning algorithm. Sci. Rep. 2021, 11, 19997. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Xia, Z.; Pan, L.; Chen, J.; Liu, X.; Li, Z.; Yan, Z.; Lin, G.; Wen, H.; Liu, B. Deep learning for screening primary osteopenia and osteoporosis using spine radiographs and patient clinical covariates in a Chinese population. Front. Endocrinol. 2022, 13, 971877. [Google Scholar] [CrossRef]
- Xie, Q.; Chen, Y.; Hu, Y.; Zeng, F.; Wang, P.; Xu, L.; Wu, J.; Li, J.; Zhu, J.; Xiang, M.; et al. Development and validation of a machine learning-derived radiomics model for diagnosis of osteoporosis and osteopenia using quantitative computed tomography. BMC Med. Imaging 2022, 22, 140. [Google Scholar] [CrossRef]
- Yamamoto, N.; Sukegawa, S.; Kitamura, A.; Goto, R.; Noda, T.; Nakano, K.; Takabatake, K.; Kawai, H.; Nagatsuka, H.; Kawasaki, K.; et al. Deep learning for osteoporosis classification using hip radiographs and patient clinical covariates. Biomolecules 2020, 10, 1534. [Google Scholar] [CrossRef]
- Hempe, H.; Yilmaz, E.B.; Meyer, C.; Heinrich, M.P. Opportunistic CT screening for degenerative deformities and osteoporotic fractures with 3D DeepLab. In Medical Imaging 2022: Image Processing; SPIE: Bellingham, DC, USA, 2022; Volume 12032, pp. 127–134. [Google Scholar]
- Abubakar, U.B.; Boukar, M.M.; Adeshina, S. Evaluation of Parameter Fine-Tuning with Transfer Learning for Osteoporosis Classification in Knee Radiograph. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 246–252. [Google Scholar] [CrossRef]
- Tassoker, M.; Öziç, M.Ü.; Yuce, F. Comparison of five convolutional neural networks for predicting osteoporosis based on mandibular cortical index on panoramic radiographs. Dentomaxillofacial Radiol. 2022, 51, 20220108. [Google Scholar] [CrossRef] [PubMed]
- Wani, I.M.; Arora, S. Osteoporosis diagnosis in knee X-rays by transfer learning based on convolution neural network. Multimed. Tools Appl. 2023, 82, 14193–14217. [Google Scholar] [CrossRef]
- Bhan, A.; Singh, S.; Vats, S.; Mehra, A. Ensemble Model based Osteoporosis Detection in Musculoskeletal Radiographs. In Proceedings of the 13th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 19–20 January 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 523–528. [Google Scholar]
- Niu, X.; Yan, W.; Li, X.; Huang, Y.; Chen, J.; Mu, G.; Li, J.; Jiao, X.; Zhao, Z.; Jing, W.; et al. A deep-learning system for automatic detection of osteoporotic vertebral compression fractures at thoracolumbar junction using low-dose computed tomography images. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, W.; Li, H.; Li, L.; Li, Z.; Cai, A.; Wang, L.; Shi, D.; Yan, B. CNN-based qualitative detection of bone mineral density via diagnostic CT slices for osteoporosis screening. Osteoporos. Int. 2021, 32, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Damilakis, J.; Maris, T.G.; Karantanas, A.H. An update on the assessment of osteoporosis using radiologic techniques. Eur. Radiol. 2007, 17, 1591–1602. [Google Scholar] [CrossRef]
d = 1 | Non-Osteoporosis | Osteoporosis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Angle | 0° | 45° | 90° | 135° | Avg. | 0° | 45° | 90° | 135° | Avg. |
Contrast | 2.432 | 3.666 | 2.635 | 3.748 | 3.120 | 3.180 | 5.412 | 4.270 | 5.340 | 4.551 |
ASM | 0.0180 | 0.0150 | 0.0172 | 0.0148 | 0.0163 | 0.0155 | 0.0125 | 0.0138 | 0.0125 | 0.0136 |
IDM | 0.5378 | 0.4719 | 0.5220 | 0.4647 | 0.4991 | 0.4831 | 0.3981 | 0.4367 | 0.4007 | 0.4297 |
Correlation | 0.8607 | 0.7892 | 0.8499 | 0.7848 | 0.8212 | 0.8106 | 0.6770 | 0.7451 | 0.6815 | 0.7286 |
d = 2 | Non-Osteoporosis | Osteoporosis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Angle | 0° | 45° | 90° | 135° | Avg. | 0° | 45° | 90° | 135° | Avg. |
Contrast | 4.701 | 3.666 | 5.156 | 3.748 | 4.318 | 5.615 | 5.412 | 7.963 | 5.340 | 6.082 |
ASM | 0.0138 | 0.0150 | 0.0131 | 0.0148 | 0.0142 | 0.0122 | 0.0125 | 0.0109 | 0.0125 | 0.0120 |
IDM | 0.4416 | 0.4719 | 0.4286 | 0.4647 | 0.4517 | 0.3982 | 0.3981 | 0.3468 | 0.4007 | 0.0386 |
Correlation | 0.7290 | 0.7892 | 0.7060 | 0.7848 | 0.7523 | 0.6672 | 0.6770 | 0.5248 | 0.6815 | 0.6377 |
Dataset | Model | AUC (%) | Accuracy (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) |
---|---|---|---|---|---|---|---|
Test cohort 1 | ResNet-101 | 90.45 (86.22–94.69) | 82.16 (76.65–87.68) | 98.41 (96.61–100) | 84.43 (79.20–89.65) | 99.04 (97.63–100) | 76.54 (70.44–82.65) |
DenseNet-169 | 89.67 (85.29–94.06) | 80.54 (74.84–86.25) | 96.83 (94.30–99.35) | 78.69 (72.79–84.59) | 97.96 (95.92–100) | 70.12 (63.52–76.71) | |
EfficientNet-B0 | 92.33 (89.20–95.47) | 82.7 (78.25–87.16) | 87.3 (83.38–91.22) | 86.89 (82.91–90.86) | 92.98 (89.97–95.99) | 77.46 (72.54–82.39) | |
GLCM+FBLS | 95.23 (92.16–98.30) | 87.09 (82.26–91.92) | 77.78 (71.79–83.77) | 90 (85.68–94.32) | 81.81 (76.25–87.37) | 87.5 (82.73–92.27) | |
Train cohort | ResNet-101 | 94.83 (92.23–97.44) | 83.75 (79.41–88.10) | 93.4 (90.48–96.33) | 83.87 (79.54–88.20) | 96.3 (94.07–98.52) | 73.91 (68.74–79.08) |
DenseNet-169 | 93.06 (89.39–96.72) | 78.34 (73.49–83.19) | 97.8 (96.08–99.53) | 78.5 (73.66–83.33) | 98.65 (97.29–100) | 68.99 (63.55–74.44) | |
EfficientNet-B0 | 93.26 (90.31–96.21) | 84.84 (80.61–89.06) | 82.42 (77.94–86.90) | 88.71 (84.98–92.44) | 91.16 (87.82–94.50) | 78.12 (73.26–82.99) | |
GLCM+FBLS | 98.2 (96.63–99.77) | 94.31 (91.58–97.04) | 90.55 (87.11–93.99) | 94.35 (91.63–97.07) | 90.7 (87.28–94.12) | 94.26 (91.52–97.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Zheng, H.; Duan, J.; Wang, X. GLCM-Based FBLS: A Novel Broad Learning System for Knee Osteopenia and Osteoprosis Screening in Athletes. Appl. Sci. 2023, 13, 11150. https://doi.org/10.3390/app132011150
Chen Z, Zheng H, Duan J, Wang X. GLCM-Based FBLS: A Novel Broad Learning System for Knee Osteopenia and Osteoprosis Screening in Athletes. Applied Sciences. 2023; 13(20):11150. https://doi.org/10.3390/app132011150
Chicago/Turabian StyleChen, Zhangtianyi, Haotian Zheng, Junwei Duan, and Xiangjie Wang. 2023. "GLCM-Based FBLS: A Novel Broad Learning System for Knee Osteopenia and Osteoprosis Screening in Athletes" Applied Sciences 13, no. 20: 11150. https://doi.org/10.3390/app132011150
APA StyleChen, Z., Zheng, H., Duan, J., & Wang, X. (2023). GLCM-Based FBLS: A Novel Broad Learning System for Knee Osteopenia and Osteoprosis Screening in Athletes. Applied Sciences, 13(20), 11150. https://doi.org/10.3390/app132011150