Rapid Detection of Tea Polyphenols in Fresh Tea Leaves Based on Fusion of Visible/Short-Wave and Long-Wave near Infrared Spectroscopy and Its Device Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Build a Portable Device
2.3. Spectral Information Acquisition
2.4. Determination of Tea Polyphenol Content
2.5. Data Analysis Methods
2.5.1. Analysis of Variance
2.5.2. Data Preprocessing
2.5.3. Selection of Sensitive Wavebands
2.5.4. Spectral Data Fusing Method
2.5.5. Establishment of the Regression Model
3. Results and Discussion
3.1. Statistical Analysis of Tea Polyphenol Content
3.2. Analysis of Spectral Reflectance
3.3. Outlier Screening and Sample Set Division
3.4. Construction and Evaluation of Models
3.5. Sensitive Waveband Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kerio, L.; Wachira, F.; Wanyoko, J.; Rotich, M. Total polyphenols, catechin profiles and antioxidant activity of tea products from purple leaf coloured tea cultivars. Food Chem. 2013, 136, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Lakenbrink, C.; Lapczynski, S.; Maiwald, B.; Engelhardt, U.H. Flavonoids and other polyphenols in consumer brews of tea and other caffeinated beverages. J. Agric. Food Chem. 2000, 48, 2848–2852. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Yi, Z.; Chen, X.; Ma, X.; Su, W.; Li, X. Polyphenol nanoparticles from commonly consumed tea for scavenging free radicals, stabilizing pickering emulsions, and inhibiting cancer cells. ACS Appl. Nano Mater. 2020, 4, 652–665. [Google Scholar] [CrossRef]
- Jang, M.; Park, R.; Park, Y.-I.; Cha, Y.-E.; Yamamoto, A.; Lee, J.I.; Park, J. EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro. Biochem. Biophys. Res. Commun. 2021, 547, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Mukhtar, H. Tea polyphenols for health promotion. Life Sci. 2007, 81, 519–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denisenko, T.A.; Miekh, Y.V.; Vishnikin, A.B. Spectrophotometric determination of polyphenols in green teas with 18-molybdodiphosphate. Odesa Natl. Univ. Herald. Chem. 2018, 23, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Gharibzahedi, S.M.T.; Barba, F.J.; Zhou, J.; Wang, M.; Altintas, Z. Electronic sensor technologies in monitoring quality of tea: A review. Biosensors 2022, 12, 356. [Google Scholar] [CrossRef]
- Hazarika, A.K.; Chanda, S.; Sabhapondit, S.; Sanyal, S.; Tamuly, P.; Tasrin, S.; Sing, D.; Tudu, B.; Bandyopadhyay, R. Quality assessment of fresh tea leaves by estimating total polyphenols using near infrared spectroscopy. J. Food Sci. Technol. 2018, 55, 4867–4876. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Zhou, Q.; Liu, Z.; Qing, X.-D.; Zheng, J.-J.; Mu, S.-T.; Liu, P.-H. Comparison of three second-order multivariate calibration methods for the rapid identification and quantitative analysis of tea polyphenols in Chinese teas using high-performance liquid chromatography. J. Chromatogr. A. 2020, 1618, 460905. [Google Scholar] [CrossRef]
- Biancolillo, A.; Marini, F. Special issue “application of spectroscopy in food analysis”. Appl. Sci. 2021, 11, 3860. [Google Scholar] [CrossRef]
- Fasolato, L.; Balzan, S.; Riovanto, R.; Berzaghi, P.; Mirisola, M.; Ferlito, J.C.; Serva, L.; Benozzo, F.; Passera, R.; Tepedino, V.; et al. Comparison of visible and near-infrared reflectance spectroscopy to authenticate fresh and frozen-thawed swordfish (Xiphias gladius L.). J. Aquat. Food Prod. Technol. 2012, 21, 493–507. [Google Scholar] [CrossRef]
- Ren, G.; Liu, Y.; Ning, J.; Zhang, Z. Assessing black tea quality based on visible–near infrared spectra and kernel-based methods. J. Food Compos. Anal. 2021, 98, 103810. [Google Scholar] [CrossRef]
- Sanaeifar, A.; Huang, X.; Chen, M.; Zhao, Z.; Ji, Y.; Li, X.; He, Y.; Zhu, Y.; Chen, X.; Yu, X. Nondestructive monitoring of polyphenols and caffeine during green tea processing using Vis-NIR spectroscopy. Food Sci. Nutr. 2020, 8, 5860–5874. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-J.; Jin, G.; Li, L.-Q.; Liu, Y.; Kalkhajeh, Y.K.; Ning, J.-M.; Zhang, Z.-Z. NIR hyperspectral imaging coupled with chemometrics for nondestructive assessment of phosphorus and potassium contents in tea leaves. Infrared Phys. Technol. 2020, 108, 103365. [Google Scholar] [CrossRef]
- Chen, S.; Wang, C.-Y.; Tsai, C.-Y.; Yang, I.-C.; Luo, S.-J.; Chuang, Y.-K. Fermentation quality evaluation of tea by estimating total catechins and theanine using near-infrared spectroscopy. Vib. Spectrosc. 2021, 115, 103278. [Google Scholar] [CrossRef]
- Hershberger, J.; Mbanjo, E.G.N.; Peteti, P.; Ikpan, A.; Ogunpaimo, K.; Nafiu, K.; Rabbi, I.Y.; Gore, M.A. Low-cost, handheld near-infrared spectroscopy for root dry matter content prediction in cassava. Plant Phenome J. 2022, 5, e20040. [Google Scholar] [CrossRef]
- Neto, R.; Niehus, M. Portable optical fiber coupled low cost visible spectrometer. Procedia Technol. 2014, 17, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Peng, Y.; Sun, H.; Zheng, X.; Wei, W. Real-time inspection of pork quality attributes using dual-band spectroscopy. J. Food Eng. 2018, 237, 103–109. [Google Scholar] [CrossRef]
- O’Rourke, S.M.; Stockmann, U.; Holden, N.M.; McBratney, A.B.; Minasny, B. An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties. Geoderma. 2016, 279, 31–44. [Google Scholar] [CrossRef]
- Ryckewaert, M.; Chaix, G.; Héran, D.; Zgouz, A.; Bendoula, R. Evaluation of a combination of NIR micro-spectrometers to predict chemical properties of sugarcane forage using a multi-block approach. Biosyst. Eng. 2022, 217, 18–25. [Google Scholar] [CrossRef]
- Blanco-Topping, R. The impact of Maryland all-payer model on patient satisfaction of care: A one-way analysis of variance (ANOVA). Int. J. Health Manag. 2020, 14, 1397–1404. [Google Scholar] [CrossRef]
- Liu, Z.; Cai, W.; Shao, X. Outlier detection in near-infrared spectroscopic analysis by using Monte Carlo cross-validation. Sci. China Chem. 2008, 51, 751–759. [Google Scholar] [CrossRef]
- Zhang, G.; Hao, H.; Wang, Y.; Jiang, Y.; Shi, J.; Yu, J.; Cui, X.; Li, J.; Zhou, S.; Yu, B. Optimized adaptive Savitzky-Golay filtering algorithm based on deep learning network for absorption spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 263, 120187. [Google Scholar] [CrossRef]
- Zimmermann, B.; Kohler, A. Optimizing Savitzky–Golay parameters for improving spectral resolution and quantification in infrared spectroscopy. Appl. Spectrosc. 2013, 67, 892–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haruna, S.A.; Li, H.; Wei, W.; Geng, W.; Adade, S.Y.-S.S.; Zareef, M.; Ivane, N.M.A.; Chen, Q. Intelligent evaluation of free amino acid and crude protein content in raw peanut seed kernels using NIR spectroscopy paired with multivariable calibration. Anal. Methods. 2022, 14, 2989–2999. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, C.; Luo, L.; He, Y. Determination of tea polyphenols content by infrared spectroscopy coupled with iPLS and random frog techniques. Comput. Electron. Agric. 2015, 112, 28–35. [Google Scholar] [CrossRef]
- Abed, F.M.; Amirshahi, S.H.; Abed, M.R.M. Reconstruction of reflectance data using an interpolation technique. J. Opt. Soc. Am. A. 2009, 26, 613–624. [Google Scholar] [CrossRef]
- Wang, W.; Peng, Y.; Sun, H.; Wang, F.; Tian, F.; Chen, X. Development of simultaneous detection device for multi-quality parameters of meat based on Vis/NIR spectroscopy. Trans. Chin. Soc. Agric. Eng. 2016, 32, 290–296. [Google Scholar] [CrossRef]
- Saptoro, A.; Tadé, M.O.; Vuthaluru, H. A modified Kennard-Stone slgorithm for optimal division of data for developing artificial neural network models. Chem. Prod. Process. Model. 2012, 7, 1–14. [Google Scholar] [CrossRef]
- Steiner, M.; Bourinet, J.-M.; Lahmer, T. An adaptive sampling method for global sensitivity analysis based on least-squares support vector regression. Reliab. Eng. Syst. Saf. 2018, 183, 323–340. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; He, Y.; Li, X. Tea moisture content detection with multispectral and depth images. Comput. Electron. Agric. 2021, 183, 106082. [Google Scholar] [CrossRef]
- Wan, Z. Quantitative structure-property relationship of standard enthalpies of nitrogen oxides based on a MSR and LS-SVR algorithm predictions. J. Mol. Struct. 2020, 1221, 128867. [Google Scholar] [CrossRef]
- Yang, B.; Li, X.; Wu, L.; Chen, Y.; Zhong, F.; Liu, Y.; Zhao, F.; Ye, D.; Weng, H. Citrus Huanglongbing detection and semi-quantification of the carbohydrate concentration based on micro-FTIR spectroscopy. Anal. Bioanal. Chem. 2022, 414, 6881–6897. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Dong, W.; Sanaeifar, A.; Wang, X.; Luo, W.; Zhan, B.; Liu, X.; Li, R.; Zhang, H.; Li, X. Development of simple identification models for four main catechins and caffeine in fresh green tea leaf based on visible and near-infrared spectroscopy. Comput. Electron. Agric. 2020, 173, 105388. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Parsimonious model development for real-time monitoring of moisture in red meat using hyperspectral imaging. Food Chem. 2016, 196, 1084–1091. [Google Scholar] [CrossRef]
- Bian, M.; Skidmore, A.K.; Schlerf, M.; Wang, T.; Liu, Y.; Zeng, R.; Fei, T. Predicting foliar biochemistry of tea (Camellia sinensis) using reflectance spectra measured at powder, leaf and canopy levels. ISPRS J. Photogramm. Remote. Sens. 2013, 78, 148–156. [Google Scholar] [CrossRef]
- Workman, J., Jr. Ultraviolet, visible, and near-infrared spectrometry. In Applied Spectroscopy: A Compact Reference for Practitioners; Elsevier: Amsterdam, The Netherlands, 1998; pp. 29–48. [Google Scholar] [CrossRef]
- Xiong, C.; Liu, C.; Pan, W.; Ma, F.; Xiong, C.; Qi, L.; Chen, F.; Lu, X.; Yang, J.; Zheng, L. Non-destructive determination of total polyphenols content and classification of storage periods of Iron Buddha tea using multispectral imaging system. Food Chem. 2014, 176, 130–136. [Google Scholar] [CrossRef]
- Zhou, R.-Q.; Li, X.-L.; He, Y.; Jin, J.-J. Determination of catechins and caffeine content in tea (Camellia sinensis L.) leaves at different positions by Fourier-Transform infrared spectroscopy. Trans. ASABE 2018, 61, 1221–1230. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, J.; Chaitep, S.; Guo, Z. Simultaneous analysis of main catechins contents in green tea (Camellia sinensis (L.)) by Fourier transform near infrared reflectance (FT-NIR) spectroscopy. Food Chem. 2009, 113, 1272–1277. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, J.; Liu, M.; Cai, J.; Liu, J. Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms. J. Pharm. Biomed. Anal. 2008, 46, 568–573. [Google Scholar] [CrossRef]
- Luo, W.; Tian, P.; Fan, G.; Dong, W.; Zhang, H.; Liu, X. Non-destructive determination of four tea polyphenols in fresh tea using visible and near-infrared spectroscopy. Infrared Phys. Technol. 2022, 123, 104037. [Google Scholar] [CrossRef]
- Wang, W.; Peng, Y. Improvement of Prediction Models for Nondestructive Detection of TVB-N Using Dual-Band Vis/NIR Spectroscopic Technique. Trans. ASABE 2017, 60, 1075–1082. [Google Scholar] [CrossRef]
- Maccioni, A.; Agati, G.; Mazzinghi, P. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. J. Photochem. Photobiol. B Biol. 2001, 61, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Picollo, M.; Aceto, M.; Vitorino, T. UV-Vis spectroscopy. Phys. Sci. Rev. 2018, 4, 1–14. [Google Scholar] [CrossRef]
- Rocha, F.S.; Gomes, A.J.; Lunardi, C.N.; Kaliaguine, S.; Patience, G.S. Experimental methods in chemical engineering: Ultraviolet visible spectroscopy-UV-Vis. Can. J. Chem. Eng. 2018, 96, 2512–2517. [Google Scholar] [CrossRef]
- Liu, J.-X.; Xin, J.-Y.; Gao, T.-T.; Li, F.-L.; Tian, X. Effect of variable selection and rapid determination of total tea polyphenols contents in Fuzhuan tea by near-infrared spectroscopy. CyTA-J. Food 2022, 20, 236–243. [Google Scholar] [CrossRef]
- Yan, J.; Huang, X.-P.; Zhu, W.-W. Simultaneous determination of antioxidant properties and total phenolic content of Siraitia grosvenorii by near infrared spectroscopy. J. Food Meas. Charact. 2020, 14, 2300–2309. [Google Scholar] [CrossRef]
- Ong, P.; Chen, S.; Tsai, C.-Y.; Chuang, Y.-K. Prediction of tea theanine content using near-infrared spectroscopy and flower pollination algorithm. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 255, 119657. [Google Scholar] [CrossRef]
- Li, X.; Jin, J.; Sun, C.; Ye, D.; Liu, Y. Simultaneous determination of six main types of lipid-soluble pigments in green tea by visible and near-infrared spectroscopy. Food Chem. 2018, 270, 236–242. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, L.; Kang, C.; Quan, B.; Zheng, Y.; Zhang, X.; Song, J.; Xia, T.; Wang, M. Near-infrared spectroscopy and machine learning-based technique to predict quality-related parameters in instant tea. Sci. Rep. 2022, 12, 3833. [Google Scholar] [CrossRef]
- Li, C.; Guo, H.; Zong, B.; He, P.; Fan, F.; Gong, S. Rapid and non-destructive discrimination of special-grade flat green tea using Near-infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 206, 254–262. [Google Scholar] [CrossRef] [PubMed]
Waveband Range | Data Set | Samples | Max/% | Min/% | Mean/% | STD/% | CV/% | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|---|---|
Single-band (400–1050 nm) | Whole set | 78 | 28.26 | 16.61 | 20.95 | 2.82 | 13.46 | −0.46 | 0.62 |
Calibration set | 52 | 28.26 | 16.61 | 21.27 | 3.11 | 14.62 | −0.91 | 0.40 | |
Prediction set | 26 | 24.59 | 16.78 | 20.34 | 2.00 | 9.83 | 0.74 | 0.92 | |
Single-band (1000–1650 nm) | Whole set | 78 | 28.26 | 16.61 | 20.89 | 2.76 | 13.21 | −0.47 | 0.59 |
Calibration set | 52 | 28.26 | 16.61 | 21.36 | 2.99 | 13.99 | −0.91 | 0.32 | |
Prediction set | 26 | 24.81 | 16.78 | 19.96 | 1.92 | 9.61 | 1.09 | 0.88 | |
Dual-band (400–1650 nm) | Whole set | 77 | 28.26 | 16.61 | 20.93 | 2.82 | 13.47 | −0.42 | 0.62 |
Calibration set | 51 | 28.26 | 16.61 | 21.39 | 3.07 | 14.35 | −0.84 | 0.35 | |
Prediction set | 26 | 25.61 | 16.92 | 20.04 | 1.95 | 9.73 | 0.42 | 0.90 |
Waveband Range | Parameters | Rc | RMSEC/% | Rp | RMSEP/% | RPD |
---|---|---|---|---|---|---|
Single-band (400–1050 nm) | 5593.054 | 0.957 | 0.912 | 0.875 | 1.155 | 2.067 |
29,796.119 | ||||||
Single-band (1000–1650 nm) | 1377.945 | 0.964 | 0.929 | 0.802 | 1.156 | 1.676 |
29,311.147 | ||||||
Dual-band (400–1650 nm) | 1893.681 | 0.976 | 0.679 | 0.893 | 0.897 | 2.230 |
25,494.311 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Qu, F.; Shen, B.; Huang, Z.; Li, X.; Weng, H.; Ye, D.; Wu, R. Rapid Detection of Tea Polyphenols in Fresh Tea Leaves Based on Fusion of Visible/Short-Wave and Long-Wave near Infrared Spectroscopy and Its Device Development. Appl. Sci. 2023, 13, 1739. https://doi.org/10.3390/app13031739
Xu J, Qu F, Shen B, Huang Z, Li X, Weng H, Ye D, Wu R. Rapid Detection of Tea Polyphenols in Fresh Tea Leaves Based on Fusion of Visible/Short-Wave and Long-Wave near Infrared Spectroscopy and Its Device Development. Applied Sciences. 2023; 13(3):1739. https://doi.org/10.3390/app13031739
Chicago/Turabian StyleXu, Jinchai, Fangfang Qu, Bihe Shen, Zhenxiong Huang, Xiaoli Li, Haiyong Weng, Dapeng Ye, and Renye Wu. 2023. "Rapid Detection of Tea Polyphenols in Fresh Tea Leaves Based on Fusion of Visible/Short-Wave and Long-Wave near Infrared Spectroscopy and Its Device Development" Applied Sciences 13, no. 3: 1739. https://doi.org/10.3390/app13031739
APA StyleXu, J., Qu, F., Shen, B., Huang, Z., Li, X., Weng, H., Ye, D., & Wu, R. (2023). Rapid Detection of Tea Polyphenols in Fresh Tea Leaves Based on Fusion of Visible/Short-Wave and Long-Wave near Infrared Spectroscopy and Its Device Development. Applied Sciences, 13(3), 1739. https://doi.org/10.3390/app13031739