Effects of Cheonwangbosim-dan in a Mouse Model of Chronic Obstructive Pulmonary Disease: Anti-Inflammatory and Anti-Fibrotic Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Analysis of Inflammatory Cells in the Lungs
2.3. BALF IL-6 and TNF-α Measurements
2.4. Histopathology of the Lungs
2.5. RNA Extraction and Real-Time PCR
2.6. Western Blot Analysis
2.7. Statistical Evaluation
3. Results
3.1. Lung Histological Analysis
3.2. Therapeutic Effect of CBD
3.3. Lung Acute Inflammation and CBD
3.4. Effect of CBD on Gene Expression Associated with Inflammation
3.5. Effect of CBD on Gene Expression Associated with Pulmonary Fibrosis
3.6. Effect of CBD on Phosphorylation Levels of NF-kB and MAPKs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Global Strategy for Diagnosis, Management, and Prevention of COPD. Available online: https://goldcopd.org/2022-gold-reports/ (accessed on 1 February 2022).
- Rabe, K.F.; Watz, H. Chronic obstructive pulmonary disease. Lancet 2017, 389, 1931–1940. [Google Scholar] [CrossRef] [PubMed]
- Vestbo, J.; Hurd, S.S.; Agustí, A.G.; Jones, P.W.; Vogelmeier, C.; Anzueto, A.; Barnes, P.J.; Fabbri, L.M.; Martinez, F.J.; Nishimura, M. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 2013, 187, 347–365. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, P.; Tian, Y.; Li, K.; Zhang, L.; Guan, Q.; Mei, X.; Qin, Y. The anti-inflammatory effect of a combination of five compounds from five Chinese herbal medicines used in the treatment of COPD. Front. Pharmacol. 2021, 12, 709702. [Google Scholar] [CrossRef] [PubMed]
- Lemire, B.B.; Debigaré, R.; Dubé, A.; Thériault, M.-E.; Côté, C.H.; Maltais, F. MAPK signaling in the quadriceps of patients with chronic obstructive pulmonary disease. J. Appl. Physiol. 2012, 113, 159–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Yang, C.; Deng, F. MicroRNA-378 inhibits the development of smoking-induced COPD by targeting TNF-α. Eur Rev Med. Pharmacol. Sci. 2019, 23, 9009–9016. [Google Scholar]
- Calixto, J.B.; Campos, M.M.; Otuki, M.F.; Santos, A.R. Anti-inflammatory compounds of plant origin. Part II. Modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med. 2004, 70, 93–103. [Google Scholar]
- Guo, R.; Pittler, M.; Ernst, E. Herbal medicines for the treatment of COPD: A systematic review. Eur. Respir. J. 2006, 28, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Kim, O.-S.; Kim, Y.; Yoo, S.-R.; Lee, M.-Y.; Shin, H.-K.; Jeong, S.-J. Cheonwangbosimdan, a traditional herbal formula, inhibits inflammatory responses through inactivation of NF-κB and induction of heme oxygenase-1 in raw264 7 murine macrophages. Int. J. Clin. Exp. Med. 2016, 9, 1692–1699. [Google Scholar]
- Kim, N.-J.; Kong, Y.-Y.; Chang, S.-W. Studies on the Efficacy of Combined Preparation of Crude Drugs (XXXVII)-The effects of Chunwangboshimdan on the central nervous system and cardio-vascular system. Korean J. Pharmacogn. 1988, 19, 208–215. [Google Scholar]
- Kim, B.; Jo, C.; Choi, H.-Y.; Lee, K. Vasorelaxant and hypotensive effects of Cheonwangbosimdan in SD and SHR rats. Evid. Based Complement. Alternat. Med. 2018, 2018, 6128604. [Google Scholar] [CrossRef] [Green Version]
- Gim, G.T.; Kim, H.-M.; Kim, J.; Kim, J.; Whang, W.-W.; Cho, S.-H. Antioxidant effect of tianwang buxin pills a traditional Chinese medicine formula: Double-blind, randomized controlled trial. Am. J. Chin. Med. 2009, 37, 227–239. [Google Scholar] [CrossRef]
- Park, J.-H.; Bae, C.-w.; Jun, H.-S.; Hong, S.-Y.; Park, S.-D. Antidepressant effect of chunwangboshimdan and its influence on monoamines. Herb. Formula Sci. 2004, 12, 77–93. [Google Scholar]
- Zhu, B.; Wang, Y.; Ming, J.; Chen, W.; Zhang, L. Disease burden of COPD in China: A systematic review. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 1353. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; Hu, S.; Li, C.; Ma, H.; Wang, Q.; Meng, G.; Guo, T.; Zhang, J. Cigarette smoke induced lung barrier dysfunction, EMT, and tissue remodeling: A possible link between COPD and lung cancer. BioMed Res. Int. 2019, 2019, 2025636. [Google Scholar] [CrossRef]
- Leopold, P.L.; O’Mahony, M.J.; Lian, X.J.; Tilley, A.E.; Harvey, B.-G.; Crystal, R.G. Smoking is associated with shortened airway cilia. PLoS ONE 2009, 4, e8157. [Google Scholar] [CrossRef]
- Zong, D.; Liu, X.; Li, J.; Ouyang, R.; Chen, P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019, 12, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Maestrelli, P.; Saetta, M.; Mapp, C.E.; Fabbri, L.M. Remodeling in response to infection and injury: Airway inflammation and hypersecretion of mucus in smoking subjects with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med 2001, 164, S76–S80. [Google Scholar] [CrossRef]
- van Eeden, S.F.; Hogg, J.C. Immune-modulation in chronic obstructive pulmonary disease: Current concepts and future strategies. Respiration 2020, 99, 550–565. [Google Scholar] [CrossRef]
- Gharaee-Kermani, M.; Ullenbruch, M.; Phan, S.H. Animal models of pulmonary fibrosis. In Fibrosis Research; Springer: Berlin, Germany, 2005; pp. 251–259. [Google Scholar]
- Hsueh, W.; Sun, X.; Rioja, L.; Gonzalez-Crussi, F. The role of the complement system in shock and tissue injury induced by tumour necrosis factor and endotoxin. Immunology 1990, 70, 309. [Google Scholar]
- Barnes, P.J. Mechanisms in COPD: Differences from asthma. Chest 2000, 117, 10S–14S. [Google Scholar] [CrossRef]
- Rogers, D. Mucus pathophysiology in COPD: Differences to asthma, and pharmacotherapy. Monaldi. Arch. Chest. Dis. 2000, 55, 324–332. [Google Scholar] [PubMed]
- Park, H.-S.; Jeong, H.-Y.; Kim, Y.-S.; Seo, C.-S.; Ha, H.; Kwon, H.-J. Anti-microbial and anti-inflammatory effects of Cheonwangbosim-dan against Helicobacter pylori-induced gastritis. J. Vet. Sci. 2020, 21, e39. [Google Scholar] [CrossRef]
- Wijerathne, C.U.; Seo, C.-S.; Song, J.-W.; Park, H.-S.; Moon, O.-S.; Won, Y.-S.; Kwon, H.-J.; Son, H.-Y. Isoimperatorin attenuates airway inflammation and mucus hypersecretion in an ovalbumin-induced murine model of asthma. Int. Immunopharmacol. 2017, 49, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Rho, J.; Seo, C.-S.; Hong, E.-J.; Baek, E.B.; Jung, E.; Park, S.; Lee, M.-Y.; Kwun, H.-J. Yijin-Tang Attenuates Cigarette Smoke and Lipopolysaccharide-Induced Chronic Obstructive Pulmonary Disease in Mice. Evid. Based Complement Alternat. Med. 2022, 2022, 7902920. [Google Scholar] [CrossRef] [PubMed]
- Hasday, J.D.; Bascom, R.; Costa, J.J.; Fitzgerald, T.; Dubin, W. Bacterial endotoxin is an active component of cigarette smoke. Chest 1999, 115, 829–835. [Google Scholar] [CrossRef]
- Chung, K. Cytokines in chronic obstructive pulmonary disease. Eur. Respir. J. 2001, 18, 50s–59s. [Google Scholar] [CrossRef]
- El-Shimy, W.S.; El-Dib, A.S.; Nagy, H.M.; Sabry, W. A study of IL-6, IL-8, and TNF-α as inflammatory markers in COPD patients. Egyp. J. Bronchol. 2014, 8, 91–99. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Takagawa, S.; Fresco, R.; Zhu, X.; Varga, J.; DiPietro, L.A. Diminished induction of skin fibrosis in mice with MCP-1 deficiency. J. Investig. Dermatol. 2006, 126, 1900–1908. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Wu, Z.; Phan, S.H. Smad3 mediates transforming growth factor-β–induced α-smooth muscle actin expression. Am. J. Respir. Cell Mol. Biol. 2003, 29, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Chen, J.; Qin, J.; Chen, R.; Yi, Z. TGF-β-induced α-SMA expression is mediated by C/EBPβ acetylation in human alveolar epithelial cells. Mol. Med. 2021, 27, 1–12. [Google Scholar]
- Ma, W.-h.; Li, M.; Ma, H.-f.; Li, W.; Liu, L.; Yin, Y.; Zhou, X.-m.; Hou, G. Protective effects of GHK-Cu in bleomycin-induced pulmonary fibrosis via anti-oxidative stress and anti-inflammation pathways. Life Sci. 2020, 241, 117139. [Google Scholar] [CrossRef]
- Hu, B.; Wu, Z.; Jin, H.; Hashimoto, N.; Liu, T.; Phan, S.H. CCAAT/enhancer-binding protein β isoforms and the regulation of α-smooth muscle actin gene expression by IL-1β. J. Immunol. 2004, 173, 4661–4668. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lu, Y.; Zhao, Z.; Wang, J.; Li, J.; Wang, W.; Li, S.; Song, L. Relationships of MMP-9 and TIMP-1 proteins with chronic obstructive pulmonary disease risk: A systematic review and meta-analysis. J. Res. Med. Sci. 2016, 21, 12. [Google Scholar] [CrossRef]
- Brajer, B.; Batura-Gabryel, H.; Nowicka, A.; Kuznar-Kaminska, B.; Szczepanik, A. Concentration of matrix metalloproteinase-9 in serum of patients with chronic obstructive pulmonary disease and a degree of airway obstruction and disease progression. J. Physiol. Pharmacol. 2008, 59, 145–152. [Google Scholar]
- Lindberg, A.; Larsson, L.-G.; Muellerova, H.; Rönmark, E.; Lundbäck, B. Up-to-date on mortality in COPD-report from the OLIN COPD study. BMC Pulm. Med. 2012, 12, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Y.; Qian, Z.; Huang, L. Elevated expression levels of matrix metalloproteinase-9 in placental villi and tissue inhibitor of metalloproteinase-2 in decidua are associated with prolonged bleeding after mifepristone-misoprostol medical abortion. Fertil. Steril. 2014, 101, 166–171.e162. [Google Scholar] [CrossRef]
- Tency, I.; Verstraelen, H.; Kroes, I.; Holtappels, G.; Verhasselt, B.; Vaneechoutte, M.; Verhelst, R.; Temmerman, M. Imbalances between matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) in maternal serum during preterm labor. PLoS ONE 2012, 7, e49042. [Google Scholar] [CrossRef] [Green Version]
- Saklatvala, J.; Nagase, H.; Salvesen, G.; Dean, J.; Clark, A. Control of the expression of inflammatory response genes. In Proceedings of the Biochemical Society Symposia; Portland Press: London, UK, 2003; pp. 95–106. [Google Scholar]
- Said, F.A.; Werts, C.; Elalamy, I.; Couetil, J.P.; Jacquemin, C.; Hatmi, M. TNF-α, inefficient by itself, potentiates IL-1β-induced PGHS-2 expression in human pulmonary microvascular endothelial cells: Requirement of NF-κB and p38 MAPK pathways. Br. J. Pharmacol. 2002, 136, 1005–1014. [Google Scholar] [CrossRef]
- Kyriakis, J.M.; Avruch, J. Protein kinase cascades activated by stress and inflammatory cytokines. Bioessays 1996, 18, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Z.; Zhang, P.; Rice, A.B.; Bonner, J.C. Regulation of interleukin-1β-induced platelet-derived growth factor receptor-α expression in rat pulmonary myofibroblasts by p38 mitogen-activated protein kinase. J. Biol. Chem. 2000, 275, 22550–22557. [Google Scholar] [CrossRef]
- Bingshan, H.; Yuxia, W. Thousand Formulas and Thousand Herbs of Traditional Chinese Medicine; Heilongjiang Education Press: Harbin, China, 1993; Volume 1. [Google Scholar]
- Cai, J.; Chao, G.; Chen, D. State Administration of Traditional Chinese Medicine: Advanced Textbook on Traditional Chinese Medicine and Pharmacology; New World Press: Beijing, China, 1997; Volume IV. [Google Scholar]
Gene ID | Gene | Primer |
---|---|---|
NM_007392 | α-SMA | Forward: 5′-TGCTGACAGAGGCACCACTGAA-3′ Reverse: 5′-CAGTTGTACGTCCAGAGGCATAG-3′ |
NM_031512 | IL-1β | Forward: 5′-AGGACCCAAGCACCTTCTTT-3′ Reverse: 5′-AGACAGCACGAGGCATTTT-3′ |
NM_012589 | IL-6 | Forward: 5′-TAGTCCTTCCTACCCCAACT-3′ Reverse: 5′-TTGGTCCTTAGCCACTCCTT-3′ |
NM_001278601 | TNF-α | Forward: 5′- CATGAGCACAGAAAGCATGA -3′ Reverse: 5′- AAGCAGGAATGAGAAGAGGC -3′ |
NM_011333 | MCP-1 | Forward: 5′-GCATCCACGTGTTGGCTCA-3′ Reverse: 5′-CTCCAGCCTACTTCATTGGGATC-3′ |
NM_013599 | MMP-9 | Forward: 5′-GTTTTTGATGCTATTGCTGA-3′ Reverse: 5′- ACCCAACTTATCCAGATCC-3′ |
NM_010810 | MMP-7 | Forward: 5′- AGGTGTGGAGTGCCAGATGTTG -3′ Reverse: 5′- CCACTACGATCCGAGGTAAGTC -3′ |
NM_011577.2 | TGF-β | Forward: 5-TTGCTTCAGCTCCACAGAGA-3′ Reverse: 5-TGGTTGTAGAGGGCAAGGAC-3′ |
NM_017008.3 | GAPDH | Forward: 5-ACAGCAACAGGGTGGTGGAC-3′ Reverse: 5-TTTGAGGGTGCAGCGAACTT-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.H.; Jung, E.; Hong, E.-J.; Baek, E.B.; Lee, M.-Y.; Kwun, H.-J. Effects of Cheonwangbosim-dan in a Mouse Model of Chronic Obstructive Pulmonary Disease: Anti-Inflammatory and Anti-Fibrotic Therapy. Appl. Sci. 2023, 13, 1829. https://doi.org/10.3390/app13031829
Kang JH, Jung E, Hong E-J, Baek EB, Lee M-Y, Kwun H-J. Effects of Cheonwangbosim-dan in a Mouse Model of Chronic Obstructive Pulmonary Disease: Anti-Inflammatory and Anti-Fibrotic Therapy. Applied Sciences. 2023; 13(3):1829. https://doi.org/10.3390/app13031829
Chicago/Turabian StyleKang, Jee Hyun, Eunhye Jung, Eun-Ju Hong, Eun Bok Baek, Mee-Young Lee, and Hyo-Jung Kwun. 2023. "Effects of Cheonwangbosim-dan in a Mouse Model of Chronic Obstructive Pulmonary Disease: Anti-Inflammatory and Anti-Fibrotic Therapy" Applied Sciences 13, no. 3: 1829. https://doi.org/10.3390/app13031829
APA StyleKang, J. H., Jung, E., Hong, E. -J., Baek, E. B., Lee, M. -Y., & Kwun, H. -J. (2023). Effects of Cheonwangbosim-dan in a Mouse Model of Chronic Obstructive Pulmonary Disease: Anti-Inflammatory and Anti-Fibrotic Therapy. Applied Sciences, 13(3), 1829. https://doi.org/10.3390/app13031829