Bioactive Vitamin C Content from Natural Selected Fruit Juices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
Preparation of Fruit Juices
- -
- Samples from citrus fruits with enough juice (grapefruit, mandarin-clementine HERNANDINA, Spain (Citrus clementina)) were extracted by mechanical pressure (juicer). Then, the juice was centrifuged to remove solid particles (seeds, pulp) and to obtain a transparent sample.
- -
- Samples from fruits with a higher amount of pulp (late peach variety Suncrest (Prunus persica var. Persica), winter apple variety REDCATS (Malus domestica), winter pear variety Lucasova (Pyrus communis), and autumn plum variety TOPTASTE (Prunus domestica) were extracted using a screw juicer (PHILCO PHJE 5030, Fast Plus, a.s., Bratislava, Slovakia), then the juice was centrifuged.
2.2. Analytical Procedure
2.2.1. Description of the Experiment
2.2.2. Iodometric Determination of Vitamin C Content
Reagents
Preparation of Solutions
Standardising Solution
2.3. Data Analyses
3. Results and Discussion
3.1. Vitamin C Content in Juices Stored in Glasses Containers
3.2. Vitamin C Content in Juices Stored in Plastic Containers
3.3. Correlation between Vitamin C Content and Storage Conditions
3.4. The vitamin C content of Fruit Juices for 7 Days, Depending on the Packaging Material (Glass and Plastic)
4. Conclusions
- -
- Monthly storage of samples at refrigerator (t1 = 4 °C), room (t2 = 23 °C), and freezer (t3 = −18 °C) temperatures resulted in a loss of vitamin C content in fruit juices stored in different packaging materials (glass, plastic) after the first day of storage;
- -
- After 7 days of storage, the quality of the juice deteriorates, making further analyses of the juice to detect the decrease in vitamin C content meaningless;
- -
- In glass food containers, the overall decrease in vitamin C concentration after 7 days of storage for each food sample analysed was lower than that observed in samples stored in plastic containers;
- -
- The most suitable temperature for storing the sample regarding the average decrease in vitamin C values over 24 h appears to be refrigerator temperature (t1 = 4 °C), followed by room temperature (t2 = 23 °C). The analysis showed the greatest decrease in vitamin C concentration of samples examined at t3 = −18 °C.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muhammad, I.; Ashiru, S.; Ibrahim, I.D.; Kanoma, A.I.; Sani, I.; Garba, S. Effect of Ripening Stage on Vitamin C Content in Selected Fruits. Int. J. Agric. Forest. Fish. 2014, 2, 60–65. Available online: http://www.openscienceonline.com/journal/ijaff (accessed on 21 February 2023).
- El-Ishaq, A.; Obirinakem, S. Effect of Temperature and Storage on Vitamin Content in Fruits Juice. Int. J. Chem. Biomol. Sci. 2015, 1, 17–21. [Google Scholar]
- Sheree, B.A.; Wilma, H.; Faye, M.O. Vitamin C Content of Ready-to-Drink Orange Juice in Different Storage Conditions. EC Nutr. 2016, 4, 212580889. [Google Scholar]
- Zhang, X.; Meng, W.; Chen, Y.; Peng, Y. Browning inhibition of plant extracts on fresh-cut fruits and vegetables—A review. J. Food Process. Preserv. 2022, 46, e16532. [Google Scholar] [CrossRef]
- Kidoń, M.; Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Kowalczewski, P.Ł. Suitability of Apples Flesh from Different Cultivars for Vacuum Impregnation Process. Appl. Sci. 2023, 13, 1528. [Google Scholar] [CrossRef]
- Jeney-Nagymate, E.; Fodor, P. The stability of vitamin C in different beverages. Br. Food J. 2008, 110, 296–309. [Google Scholar] [CrossRef]
- Lis, D.M.; Jorda, M.; Lipuma, T.; Smith, T.; Schaal, K.; Baar, K. Collagen and Vitamin C Supplementation Increases Lower Limb Rate of Force Development. Int. J. Sport Nutr. Exerc. Metab. 2022, 32, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, M.; Konopska, J.; Feszterová, M.; Zbikowska, A.; Kowalska, B. Quality Assessment of Natural Juices and Consumer Preferences in the Range of Citrus Fruit Juices. Appl. Sci. 2023, 13, 765. [Google Scholar] [CrossRef]
- Mussa, A.; Mohd Idris, R.A.; Ahmed, N.; Ahmad, S.; Murtadha, A.H.; Tengku Din, T.A.D.A.A.; Yean, C.Y.; Wan Abdul Rahman, W.F.; Mat Lazim, N.; Uskoković, V.; et al. High-Dose Vitamin C for Cancer Therapy. Pharmaceuticals 2022, 15, 711. [Google Scholar] [CrossRef]
- Englard, S.; Seifter, S. The biochemical functions of ascorbic acid. Annu. Rev. Nutr. 1986, 6, 365–406. [Google Scholar] [CrossRef]
- Carr, A.; Frei, B. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1999, 13, 1007–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuiper, C.; Vissers, M.C.M. Ascorbate as a Co-Factor for Fe- and 2-Oxoglutarate Dependent Dioxygenases: Physiological Activity in Tumor Growth and Progression. Front. Oncol. 2014, 4, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ringling, C.; Rychlik, M. Simulation of food folate digestion and bioavailability of an oxidation product of 5-methyltetrahydrofolate. Nutrients 2017, 9, 969. [Google Scholar] [CrossRef]
- Zümreoglu-Karan, B. The coordination chemistry of Vitamin C: An overview. Coord. Chem. Rev. 2006, 250, 2295–2307. [Google Scholar] [CrossRef]
- Dorofejeva, K.; Rakcejeva, T.; Galoburda, R.; Dukalska, L.; Kviesis, J. Vitamin C content in Latvian cranberries dried in convective and microwave vacuum driers. Procedia Food Sci. 2011, 1, 433–440. [Google Scholar] [CrossRef] [Green Version]
- Mditshwa, A.; Magwaza, L.S.; Tesfaya, S.Z.; Mbili, N. Postharvest quality and composition of organically and conventionally produced fruits: A review. Sci. Hortic. 2017, 216, 148–159. [Google Scholar] [CrossRef]
- Starek-Wójcicka, A.; Sagan, A.; Terebun, P.; Kwiatkowski, M.; Osmólska, E.; Krajewska, M.; Grządka, E.; Matsuyama, N.; Hayashi, N.; Pawlat, J. Quality of Tomato Juice as Influenced by Non-Thermal Air Plasma Treatment. Appl. Sci. 2023, 13, 578. [Google Scholar] [CrossRef]
- Jain, A.; Tiwari, A.; Verma, A.; Jain, S.K. Vitamins for Cancer Prevention and Treatment: An Insight. Curr. Mol. Med. 2017, 17, 321–340. [Google Scholar] [CrossRef] [PubMed]
- Sotomayor, C.G.; Eisenga, M.F.; Gomes Neto, A.W.; Ozyilmaz, A.; Gans, R.O.B.; Jong, W.H.A.; Zelle, D.M.; Berger, S.P.; Gaillard, C.A.J.M.; Navis, G.J.; et al. Vitamin C Depletion and All-Cause Mortality in Renal Transplant Recipients. Nutrients 2017, 9, 568. [Google Scholar] [CrossRef] [Green Version]
- Carr, A.C.; McCall, C. The role of vitamin C in the treatment of pain: New insights. J. Transl. Med. 2017, 15, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juhl, B.; Lauszus, F.F.; Lykkesfeldt, J. Poor Vitamin C Status Late in Pregnancy Is Associated with Increased Risk of Complications in Type 1 Diabetic Women: A Cross-Sectional Study. Nutrients 2017, 9, 186. [Google Scholar] [CrossRef]
- Ting, H.H.; Timimi, F.K.; Boles, K.S.; Creager, S.J.; Ganz, P.; Creager, M.A. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J. Clin. Investig. 1996, 97, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Salonen, R.M.; Nyyssönen, K.; Kaikkonen, J.; Porkkala-Sarataho, E.; Voutilainen, S.; Rissanen, T.H.; Tuomainen, T.P.; Valkonen, V.P.; Ristonmaa, U.; Lakka, H.M.; et al. Six-year effect of combined vitamin C and E supplementation on atherosclerotic progression: The Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) Study. Circulation 2003, 107, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Van Straten, M.; Josling, P. Preventing the common cold with a vitamin C supplement: A double-blind, placebo-controlled survey. Adv. Ther. 2002, 19, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Valero, M.P.; Fletcher, A.E.; De Stavola, B.L.; Vioque, J.; Alepuz, V.C. Vitamin C is associated with reduced risk of cataract in a Mediterranean population. J. Nutr. 2002, 132, 1299–1306. [Google Scholar] [CrossRef] [Green Version]
- Ramdas, W.D.; Schouten, J.; Webers, C.A.B. The Effect of Vitamins on Glaucoma: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 359. [Google Scholar] [CrossRef] [Green Version]
- Seddon, J.M.; Ajani, U.A.; Sperduto, R.D.; Hiller, R.; Blair, N.; Burton, T.C.; Farber, M.D.; Gragoudas, E.S.; Haller, J.; Miller, D.T.; et al. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. Jama 1994, 272, 1413–1420. [Google Scholar] [CrossRef]
- Chen, G.C.; Lu, D.B.; Pang, Z.; Liu, Q.F. Vitamin C intake, circulating vitamin C and risk of stroke: A meta-analysis of prospective studies. J. Am. Heart Assoc. 2013, 2, e000329. [Google Scholar] [CrossRef] [Green Version]
- Elste, V.; Troesch, B.; Eggersdorfer, M.; Weber, P. Emerging Evidence on Neutrophil Motility Supporting Its Usefulness to Define Vitamin C Intake Requirements. Nutrients 2017, 9, 503. [Google Scholar] [CrossRef] [Green Version]
- Losonczy, K.G.; Harris, T.B.; Havlik, R.J. Vitamin E and vitamin C supplement use and risk of all-cause and coronary heart disease mortality in older persons: The Established Populations for Epidemiologic Studies of the Elderly. Am. J. Clin. Nutr. 1996, 64, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Cano, A.; Medina, A.; Bermejo, A. Bioactive compounds in different citrus varieties. Discrimination among cultivars. J. Food Composit. Anal. 2008, 21, 377–381. [Google Scholar] [CrossRef]
- Beton-Mysur, K.; Brozek-Pluska, B. Raman Spectroscopy and Imaging Studies of Human Digestive Tract Cells and Tissues—Impact of Vitamin C and E Supplementation. Molecules 2023, 28, 137. [Google Scholar] [CrossRef] [PubMed]
- Ajibola, V.O.; Babatunde, O.A.; Suleiman, S. The Effect of Storage Method on the Vitamin C Content in Some Tropical Fruit Juices. Trends Appl. Sci. Res. 2009, 4, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Chebrolu, K.K.; Jayaprakasha, G.; Jifon, J.L.; Patil, B.S. Production system and storage temperature influence grapefruit vitamin C, limonoids, and carotenoids. J. Agric. Food Chem. 2012, 60, 7096–7103. [Google Scholar] [CrossRef]
- Johnson, O.R.; Yetu, A.J.; Oloruntoba, A.C.; Samuel, S.A. Effects of Nigerian Market Storage Conditions on Ascorbic Acid Contents of Selected Tetrapak Packaged Citrus Fruit Juice. J. Agric. Biol. Sci. 2013, 8, 179. [Google Scholar]
- Qaderi, R.; Mezzetti, B.; Capocasa, F.; Mazzoni, L. Stability of Strawberry Fruit (Fragaria x ananassa Duch.) Nutritional Quality at Different Storage Conditions. Appl. Sci. 2023, 13, 313. [Google Scholar] [CrossRef]
- Klimczak, I.; Małecka, M.; Szlachta, M.; Gliszczyńska-Świgło, A. Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. J. Food Composit. Anal. 2007, 20, 313–322. [Google Scholar] [CrossRef]
- Gonzalez, M.J.; Miranda-Massari, J.R.; Olalde, J. Chapter 9—Vitamin C and mitochondrial function in health and exercise. In Molecular Nutrition and Mitochondria; Ostojic, S.M., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 225–242. [Google Scholar] [CrossRef]
- Valente, A.; Sanches-Silva, A.; Albuquerque, T.G.; Costa, H.S. Development of an orange juice in-house reference material and its application to guarantee the quality of vitamin C determination in fruits, juices and fruit pulps. Food Chem. 2014, 154, 71–77. [Google Scholar] [CrossRef]
- Mateescu, A.M.; Mureșan, A.E.; Pușcaș, A.; Mureșan, V.; Sestras, R.E.; Muste, S. Baby Food Purees Obtained from Ten Different Apple Cultivars and Vegetable Mixtures: Product Development and Quality Control. Appl. Sci. 2022, 12, 12462. [Google Scholar] [CrossRef]
- Trifunschi, S.; Zugravu, C.A.; Munteanu, M.F.; Borcan, F.; Pogurschi, E.N. Determination of the Ascorbic Acid Content and the Antioxidant Activity of Different Varieties of Vegetables Consumed in Romania, from Farmers and Supermarkets. Sustainability 2022, 14, 13749. [Google Scholar] [CrossRef]
- Rahman, M.S.; Al-Rizeiqi, M.H.; Guizani, N.; Al-Ruzaiqi, M.S.; Al-Aamri, A.H.; Zainab, S. Stability of vitamin C in fresh and freeze-dried capsicum stored at different temperatures. J. Food Sci. Technol. 2015, 52, 1691–1697. [Google Scholar] [CrossRef] [Green Version]
- Magwaza, L.S.; Mditshwa, A.; Tesfay, S.Z.; Opara, U.L. An overview of preharvest factors affecting vitamin C content of citrus fruit. Sci. Hortic. 2017, 216, 12–21. [Google Scholar] [CrossRef]
- Ibrahim, M.A. Effect of Different Storage Condition on pH and Vitamin C Content in Some Selected Fruit Juices (Pineapple, Pawpaw and Watermelon). Int. J. Biochem. Res. Rev. 2016, 11, 1–5. [Google Scholar] [CrossRef]
- Martí, N.; Mena, P.; Cánovas, J.A.; Micol, V.; Saura, D. Vitamin C and the Role of Citrus Juices as Functional Food. Nat. Prod. Commun. 2009, 4, 677–700. [Google Scholar] [CrossRef] [Green Version]
- Robertson, G.L.; Saminego-Esguerra, C.M. Effect of initial dissolved oxygen levels on the degradation of ascorbic acid and browning of lemon juice during storage. J. Food Sci. 1986, 51, 184–187. [Google Scholar] [CrossRef]
- Lee, H.; Nagy, S. Quality changes and nonenzymatic browning intermediate in grapefruit juice during storage. J. Food Sci. 1988, 53, 168–172. [Google Scholar] [CrossRef]
- Robertson, G.L.; Saminego-Esguerra, C.M. Effect of soluble solids and temperature on ascorbic acid degradation in lemon juice stored in glass bottles. J. Food Qual. 1990, 13, 361–364. [Google Scholar] [CrossRef]
- Rassis, D.; Saguy, I. Oxygen effect nonenzymatic browning and vitamin C in commercial citrus juices and concentrate. LWT Food Sci. Technol. 1995, 28, 285–290. [Google Scholar] [CrossRef]
- Kabasakalis, V.; Siopidou, D.; Moshatou, E. Ascorbic acid content of commercial fruit juices and its rate of loss upon storage. Food Chem. 2000, 70, 325–328. [Google Scholar] [CrossRef]
- Ziena, H.M.S. Quality attributes of Bearss Seedless lime (Citrus latifolia Tan) juice during storage. Food Chem. 2000, 71, 167–172. [Google Scholar] [CrossRef]
- Manso, M.C.; Oliveira, F.A.; Oliveira, J.C.; Frias, J.M. Modelling ascorbic acid thermal degradation and browning in orange juice under aerobic conditions. Int. J. Food Sci. Technol. 2001, 36, 303–312. [Google Scholar] [CrossRef]
- Nagy, S. Vitamin C contents of citrus fruit and their products: A review. J. Agric. Food Chem. 1980, 28, 8–18. [Google Scholar] [CrossRef] [PubMed]
- López Fernández, J. La Naranja, Composición y Cualidades de sus Zumos y Esencias; Generalitat Valenciana, Consellería de Agricultura y Medio Ambiente: Valencia, Spain, 1995; 414p. [Google Scholar]
- García-Closas, R.; Berenguer, A.; Tormo, M.J.; Sánchez, M.J.; Quirós, J.R.; Navarro, C. Dietary sources of vitamin C, vitamin E and specific carotenoids in Spain. Br. J. Nutr. 2004, 91, 1005–1011. [Google Scholar] [CrossRef] [Green Version]
- Commodity in Focus. Food and Agriculture Organization of the United Nations (FAO). Available online: https://www.fao.org/markets-and-trade/commodities/citrus/en/ (accessed on 3 January 2023).
- Vinson, J.A.; Proch, J.; Bose, P. Determination of quantity and quality of poliphenol antioxidants in foods and beverages. Meth. Enzymol. 2001, 335, 103–114. [Google Scholar]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef] [PubMed]
- Ninfali, P.; Bacchiocca, M. Polyphenols and antioxidant capacity of vegetables under fresh and frozen conditions. J. Agric. Food Chem. 2003, 51, 2222–2226. [Google Scholar] [CrossRef]
- Taylor, C.A.; Hampl, J.S.; Johnston, C.S. Low intakes of vegetables and fruits, especially citrus fruits, lead to inadequate vitamin C intakes among adults. Eur. J. Clin. Nutr. 2000, 54, 573–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knekt, P.; Kumpulainen, J.; Järvinen, R.; Rissanen, H.; Heliövaara, M.; Reunanen, A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002, 76, 560–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Moreno, C.; Cano, M.P.; De Ancos, B.; Plaza, L.; Olmedilla, B.; Granado, F.; Martín, A. Effect of orange juice intake on vitamin C concentrations and biomarkers of antioxidant status in humans. Am. J. Clin. Nutr. 2003, 78, 454–460. [Google Scholar] [CrossRef] [Green Version]
- Dauchet, L.; Péneau, S.; Bertrais, S.; Vergnaud, A.C.; Estaquio, C.; Kesse-Guyot, E. Relationships between different types of fruit and vegetable consumption and serum concentrations of antioxidant vitamins. Br. J. Nutr. 2008, 100, 633–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halliwell, B. Establishing the significant and optimal intake of dietary antioxidants: The biomarker concept. Nutr. Rev. 1999, 57, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.; Martín-Consuegra, D.; Molina, A. The importance of packaging in purchase and usage behaviour. Int. J. Consum. Stud. 2015, 39, 203–211. [Google Scholar] [CrossRef]
- Tantray, A.K.; Dar, S.A.; Ahmad, S.; Bhat, S.A. Spectrophotometric and Titrimetric Analysis of Phytoascorbate. J. Pharmacogn. Phytochem. 2017, 6, 27–31. [Google Scholar]
- Nerdy, N. Determination of Vitamin C in Various Colours of Bell Pepper (Capsicum annuum L.) by Titration Method. Alchemy J. Penelit. Kim. 2018, 14, 164. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.-Z.; Cao, P.-P.; Zhu, Y.-Y.; Liu, S.; Gao, H.-W.; Huang, C.-Q. Rapid Detection of vitamin C content in fruits and vegetables using a digital camera and color reaction. Quim. Nova 2020, 43, 1421–1430. [Google Scholar] [CrossRef]
- Bieniasz, M.; Dziedzic, E.; Kaczmarczyk, E. The Effect of Storage and Processing on Vitamin C Content in Japanese Quince Fruit. Folia Hortic. 2017, 29, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Cardeñosa, V.; Barros, L.; Barreira, J.C.M.; Arenas, F.; Moreno-Rojas, J.M.; Ferreira, I.C.F.R. Different Citrus rootstocks present high dissimilarities in their antioxidant activity and vitamins content according to the ripening stage. J. Plant Physiol. 2015, 147, 124–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulauskienė, A.; Tarasevičienė, Ž.; Žebrauskienė, A.; Pranckietienė, I. Effect of Controlled Atmosphere Storage Conditions on the Chemical Composition of Super Hardy Kiwifruit. Agronomy 2020, 10, 822. [Google Scholar] [CrossRef]
- Tareen, H.; Ahmed, S.; Mengal, F.; Masood, Z.; Bibi, S.; Mengal, R.; Shoaib, S.; Irum, U.; Akbar, S.; Mandokhail, F.; et al. Estimation of Vitamin C Content in Artificially Packed Juices of Two Commercially Attracted Companies in Relation to Their Significance for Human Health. Biol. Forum Int. J. 2015, 7, 682–685. [Google Scholar]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Njoku, P.C.; Ayuk, A.A.; Okoye, C.V. Temperature Effects on Vitamin C Content in Citrus Fruits. Pak. J. Nutr. 2011, 10, 1168–1169. [Google Scholar] [CrossRef]
- Oyetade, O.A.; Oyeleke, G.O.; Adegoke, B.M.; Akintunde, A.O. Stability Studies on Ascorbic Acid (Vitamin C) From Different Sources. IOSR-JAC 2012, 2, 20–24. [Google Scholar]
- Méndez, R.F.; Arancibia, S.R. Vitamin C in Health and Disease: Its Role in the Metabolism of Cells and Redox State in the Brain. Front. Physiol. 2015, 6, 397. [Google Scholar] [CrossRef] [Green Version]
- Markechová, D.; Stehlíková, B.; Tirpáková, A. Štatistické Metódy a ich Aplikácie; UKF: Nitra, Slovakia, 2011; 534p. [Google Scholar]
- Lessin, W.J.; Catignani, G.L.; Schwartz, S.J. Quantification of cis-trans isomers of provitamin A carotenoids in fresh and processed fruits and vegetables. J. Agric. Food Chem. 1997, 45, 3728–3732. [Google Scholar] [CrossRef]
- Farnworth, E.R.; Lagacé, M.; Couture, R.; Yaylayan, V.; Stewart, B. Thermal processing, storage conditions, and the composition and physical properties of orange juice. Food Res. Int. 2001, 34, 25–30. [Google Scholar] [CrossRef]
- Zhao, Y. Freezing process of berries. In Berry Fruit, Value-Added Products for Health Promotion; Zhao, Y., Ed.; CRC, Taylor and Francis Group: Abingdon, UK, 2007; pp. 291–312. [Google Scholar]
- Lee, H.S.; Coates, G.A. Effect of thermal pasteurisation on Valencia orange juice color and pigments. LWT Food Sci. Technol. 2003, 36, 153–156. [Google Scholar] [CrossRef]
- Spínola, V.; Lorent-Martínez, E.J.; Castilho, P.C. Determination of vitamin C in foods: Current state of method validation. J. Chromatogr. A 2014, 1369, 2–17. [Google Scholar] [CrossRef]
- Khairi, A.N.; Falah, M.A.; Suyantohadi, A.; Takahashi, N.; Nishina, H. Effect of Storage Temperatures on Color of Tomato Fruit (Solanum lycopersicum Mill.) Cultivated under Moderate Water Stress Treatment. Agric. Agric. Sci. Procedia 2015, 3, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Phillips, K.M.; Council-Troche, M.; Mcginty, R.C.; Rasor, A.S.; Tarrago-Trani, M.T. Stability of vitamin C in fruit and vegetable homogenates stored at different temperatures. J. Food Compos. Anal. 2016, 45, 147–162. [Google Scholar] [CrossRef]
- Berry, R.E.; Bissett, O.W.; Veldhuis, M.K. Vitamin C retention in orange juice as related to container type. Citrus Ind. 1971, 52, 12–13. [Google Scholar]
- Lee, H.S.; Coates, G.A. Vitamin C in frozen, fresh squeezed, unpasteurised, polyethylene-bottled orange juice: A storage study. Food Chem. 1999, 65, 165–168. [Google Scholar] [CrossRef]
- Mirsaeedghazi, H.; Emam-Djomeh, Z.; Ahmadkhaniha, R. Effect of frozen storage on the anthocyanins and phenolic components of pomegranate juice. J. Food Sci. Technol. 2014, 51, 382–386. [Google Scholar] [CrossRef] [Green Version]
- Akyildiz, A.; Karaca, E.; Agcam, E.; Dundar, B.; Cınkır, N.I. Changes in quality attributes during production steps and frozen-storage of pomegranate juice concentrate. J. Food Composit. Anal. 2020, 92, 103548. [Google Scholar] [CrossRef]
- Bissett, O.W.; Berry, R.E. Ascorbic acid retention in orange juice as related to container type. J. Food Sci. 1975, 40, 178–180. [Google Scholar] [CrossRef]
- Shaw, P.E.; Moshonas, M.G. Ascorbic Acid Retention in Orange Juice Stored under Simulated Consumer Home Conditions. J. Food Sci. 1991, 56, 867–868. [Google Scholar] [CrossRef]
- Kim, H.; Larry, R.; Beuchat, L.R. Survival and Growth of Enterobacter sakazakii on Fresh-Cut Fruits and Vegetables and in Unpasteurized Juices as Affected by Storage Temperature. J. Food Prot. 2005, 68, 2541–2552. [Google Scholar] [CrossRef]
- Vegara, S.; Martí, N.; Mena, P.; Saura, D.; Valero, M. Effect of pasteurisation process and storage on color and shelf-life of pomegranate juices. LWT Food Sci. Technol. 2013, 54, 592–596. [Google Scholar] [CrossRef]
- Yusof, S.; Shian, L.S.; Osman, A. Changes in quality of sugar-cane juice upon delayed extraction and storage. Food Chem. 2000, 68, 395–401. [Google Scholar] [CrossRef]
- Feller, P.J. Shelf life and quality of freshly squeezed, unpasteurised polyethylene-bottled citrus juice. J. Food Sci. 1988, 53, 1699–1702. [Google Scholar] [CrossRef]
- Vanderslice, J.T.; Higgs, D.J.; Hayes, J.M.; Block, G. Ascorbic acid and dehydroascorbic acid content of foods-as-eaten. J. Food Compos. Anal. 1990, 3, 105–118. [Google Scholar] [CrossRef]
- Saguy, I.; Kopelman, I.J.; Mizrahi, S. Simulation of ascorbic acid stability during heat processing and concentration of grapefruit juices. J. Food Process Eng. 1978, 2, 213–225. [Google Scholar] [CrossRef]
- Nagy, S.; Smoot, J.M. Temperature and storage effects on percent retention and percent U.S. Recommended dietary allowance of vitamin C in canned single-strength orange juice. J. Agric. Food Chem. 1977, 25, 135–138. [Google Scholar] [CrossRef] [PubMed]
Juices | Grapefruit * | Mandarin- Clementine * | Late Peach * | Winter Apple * | Winter Pear * | Autumn Plum * |
---|---|---|---|---|---|---|
(mg/100 g) | (mg/100 g) | (mg/100 g) | (mg/100 g) | (mg/100 g) | (mg/100 g) | |
t1 = 4 °C | ||||||
0 day | 34.50 ± 0.2 | 23.00 ± 0.2 | 8.50 ± 0.1 | 4.40 ± 0.1 | 6.70 ± 0.1 | 7.10 ± 0.1 |
1 day | 34.30 ± 0.2 | 20.50 ± 0.2 | 7.70 ± 0.1 | 4.30 ± 0.1 | 6.65 ± 0.1 | 7.10 ± 0.1 |
2 days | 32.00 ± 0.2 | 17.80 ± 0.2 | 7.70 ± 0.1 | 4.25 ± 0.1 | 6.60 ± 0.1 | 7.00 ± 0.1 |
3 days | 30.10 ± 0.2 | 14.50 ± 0.2 | 7.30 ± 0.1 | 3.90 ± 0.1 | 6.50 ± 0.1 | 6.90 ± 0.1 |
7 days | 29.90 ± 0.2 | 12.10 ± 0.2 | 7.00 ± 0.1 | 3.59 ± 0.1 | 6.50 ± 0.1 | 6.55 ± 0.1 |
14 days | 22.85 ± 0.2 | 11.70 ± 0.1 | 6.80 ± 0.1 | 3.50 ± 0.1 | 6.40 ± 0.1 | 6.42 ± 0.1 |
21 days | 22.60 ± 0.2 | 11.00 ± 0.1 | 6.55 ± 0.1 | 3.45 ± 0.1 | 6.25 ± 0.1 | 6.30 ± 0.1 |
t2 = 23 °C | ||||||
0 day | 34.50 ± 0.2 | 23.00 ± 0.2 | 8.50 ± 0.1 | 4.40 ± 0.1 | 6.70 ± 0.1 | 7.10 ± 0.1 |
1 day | 33.40 ± 0.2 | 18.60 ± 0.2 | 7.80 ± 0.1 | 4.20 ± 0.1 | 6.55 ± 0.1 | 7.00 ± 0.1 |
2 days | 31.20 ± 0.2 | 18.20 ± 0.2 | 7.60 ± 0.1 | 4.10 ± 0.1 | 6.40 ± 0.1 | 6.90 ± 0.1 |
3 days | 30.00 ± 0.2 | 13.00 ± 0.2 | 7.40 ± 0.1 | 3.55 ± 0.1 | 6.40 ± 0.1 | 6.45 ± 0.1 |
7 days | 27.90 ± 0.2 | 10.00 ± 0.1 | 7.15 ± 0.1 | 3.43 ± 0.1 | 6.30 ± 0.1 | 6.37 ± 0.1 |
14 days | 22.80 ± 0.2 | 7.25 ± 0.1 | 7.00 ± 0.1 | 3.30 ± 0.1 | 6.20 ± 0.1 | 6.22 ± 0.1 |
21 days | 22.40 ± 0.2 | 7.00 ± 0.1 | 7.00 ± 0.1 | 3.30 ± 0.1 | 6.20 ± 0.1 | 6.20 ± 0.1 |
t3 = −18 °C | ||||||
0 day | 34.50 ± 0.2 | 23.00 ± 0.2 | 8.50 ± 0.1 | 4.40 ± 0.1 | 6.70 ± 0.1 | 7.10 ± 0.1 |
1 day | 30.10 ± 0.2 | 18.50 ± 0.2 | 8.10 ± 0.1 | 3.75 ± 0.1 | 6.60 ± 0.1 | 6.80 ± 0.1 |
2 days | 29.90 ± 0.2 | 17.00 ± 0.2 | 7.90 ± 0.1 | 3.65 ± 0.1 | 6.40 ± 0.1 | 6.65 ± 0.1 |
3 days | 28.40 ± 0.2 | 13.50 ± 0.2 | 7.90 ± 0.1 | 3.65 ± 0.1 | 6.30 ± 0.1 | 6.60 ± 0.1 |
7 days | 26.80 ± 0.2 | 11.85 ± 0.2 | 7.20 ± 0.1 | 3.30 ± 0.1 | 6.30 ± 0.1 | 6.45 ± 0.1 |
14 days | 23.30 ± 0.2 | 9.75 ± 0.1 | 7.00 ± 0.1 | 3.30 ± 0.1 | 6.20 ± 0.1 | 6.25 ± 0.1 |
21 days | 23.00 ± 0.2 | 9.00 ± 0.1 | 6.80 ± 0.1 | 3.20 ± 0.1 | 6.15 ± 0.1 | 6.20 ± 0.1 |
Juices | Glass Containers | Plastic Containers | ||||
---|---|---|---|---|---|---|
t1 = 4 °C | t2 = 23 °C | t3 = −18 °C | t1 = 4 °C | t2 = 23 °C | t3 = −18 °C | |
Grapefruit | −0.952 | −0.952 | −0.898 | −0.944 | −0.913 | −0.871 |
Mandarin-clementine | −0.807 | −0.864 | −0.842 | −0.789 | −0.902 | −0.830 |
Late Peach | −0.935 | −0.766 | −0.919 | −0.882 | −0.855 | −0.920 |
Winter Apple | −0.874 | −0.805 | −0.758 | −0.724 | −0.741 | −0.654 |
Winter Pear | −0.957 | −0.832 | −0.813 | −0.688 | −0.744 | −0.782 |
Autumn Plum | −0.945 | −0.834 | −0.877 | −0.608 | −0.764 | −0.760 |
Fruit Juices | The Temperature of Storage in Glass Containers | ||
---|---|---|---|
t = 4 °C | t = 23 °C | t = −18 °C | |
Grapefruit | y = −1.34x + 36.18 R2 = 0.9240 | y = −1.66x + 36.38 R2 = 0.9891 | y = −1.71x + 35.07 R2 = 0.8847 |
Mandarin- clementine | y = −2.78x + 25.92 R2 = 0.9976 | y = −3.16x + 26.04 R2 = 0.9599 | y = −2.73x + 24.96 R2 = 0.9710 |
Late Peach | y = −0.12x + 8.63 R2 = 0.9730 | y = −0.31x + 8.62 R2 = 0.9135 | y= −0.52x + 9.13 R2 = 0.9786 |
Winter Apple | y = −0.202x + 4.694 R2 = 0.9030 | y = −0.259x + 4.713 R2 = 0.9357 | y = −0.23x + 4.44 R2 = 0.8202 |
Winter Pear | y = −0.055x + 6.755 R2 = 0.9453 | y = −0.095x + 6.755 R2 = 0.9209 | y = −0.11x + 6.79 R2 = 0.9167 |
Autumn Plum | y = −0.13x + 7.32 R2 = 0.8125 | y = −0.201x + 7.367 R2 = 0.9163 | y = −0.15x + 7.17 R2 = 0.9259 |
Fruit juices | The temperature of storage in plastic containers | ||
t = 4 °C | t = 23 °C | t = −18 °C | |
Grapefruit | y = −1.61x + 35.87 R2 = 0.9668 | y = −1.75x + 35.15 R2 = 0.9088 | y = −1.83x + 35.03 R2 = 0.8875 |
Mandarin- clementine | y = −2.74x + 25.28 R2 = 0.9843 | y = −2.98x + 25.44 R2 = 0.9526 | y = −2.8x + 25.02 R2 = 0.9600 |
Late Peach | y = −0.38x + 9 R2 = 0.9678 | y = −0.34x + 8.66 R2 = 0.9088 | y = −0.52x + 9.13 R2 = 0.9786 |
Winter Apple | y = −0.251x + 4.577 R2 = 0.9313 | y = −0.26x + 4.6 R2 = 0.9548 | y = −0.22x + 4.31 R2 = 0.6676 |
Winter Pear | y = −0.106x + 6.7 R2 = 0.7886 | y = −0.105x + 6.685 R2 = 0.7449 | y = −0.119x + 6.779 R2 = 0.9721 |
Autumn Plum | y = −0.156x + 7.042 R2 = 0.6769 | y = −0.225x + 7.325 R2 = 0.9040 | y = −0.17x + 7.1 R2 = 0.7983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feszterová, M.; Mišiaková, M.; Kowalska, M. Bioactive Vitamin C Content from Natural Selected Fruit Juices. Appl. Sci. 2023, 13, 3624. https://doi.org/10.3390/app13063624
Feszterová M, Mišiaková M, Kowalska M. Bioactive Vitamin C Content from Natural Selected Fruit Juices. Applied Sciences. 2023; 13(6):3624. https://doi.org/10.3390/app13063624
Chicago/Turabian StyleFeszterová, Melánia, Margaréta Mišiaková, and Małgorzata Kowalska. 2023. "Bioactive Vitamin C Content from Natural Selected Fruit Juices" Applied Sciences 13, no. 6: 3624. https://doi.org/10.3390/app13063624
APA StyleFeszterová, M., Mišiaková, M., & Kowalska, M. (2023). Bioactive Vitamin C Content from Natural Selected Fruit Juices. Applied Sciences, 13(6), 3624. https://doi.org/10.3390/app13063624