Image Enhancement Method in Underground Coal Mines Based on an Improved Particle Swarm Optimization Algorithm
Abstract
:1. Introduction
2. The Proposed Method
2.1. Improved Particle Swarm Optimization Algorithm
2.1.1. Fitness Evaluation Function
2.1.2. Inertia Weight and Learning Factor
2.2. Gamma Transform and Fractional Order Image Enhancement
2.2.1. Gamma Transform
2.2.2. Fractional Order Detail Enhancement
2.3. Gamma Transform and Fractional-Order Image Enhancement Algorithm Based on Particle Swarm Seeking
3. Experimental Results and Analysis
3.1. Image Enhancement Comparison Experiment
3.2. Analysis of Experimental Results
3.3. Test in Yale Dataset
4. Application in Simulated Coal Mine Environment
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.F.; Feng, L.J.; Zhao, Z.; Yu, H.J. Research on Underground Coal Mine Production Process Anlysis and Informatization. In Proceedings of the International Conference on Engineering Materials, Energy, Management and Control, Beijing, China, 22–23 January 2011; Volume 171–172, pp. 278–282. [Google Scholar] [CrossRef]
- Zhong, T.; Lou, P.J.; Ruan, H.X.; Zhang, B. Construction of Coal Mine Comprehensive Informatization Based on Kilomega Fiber-optic Industry Ether Ring Network. In Proceedings of the International Conference on Computer-Aided Design, Manufacturing, Modeling and Simulation (CDMMS 2011), Hangzhou, China, 13–16 September 2011; Volume 88–89, p. 448. [Google Scholar] [CrossRef]
- Yu, K.; Zhou, L.J.; Liu, P.P.; Chen, J.; Miao, D.J.; Wang, J.S. Research on a Risk Early Warning Mathematical Model Based on Data Mining in China’s Coal Mine Management. Mathematics 2022, 10, 4028. [Google Scholar] [CrossRef]
- Tian, J.; Yin, X.J. Adaptive image enhancement algorithm based on the model of surface roughness detection system. Eurasip J. Image Video Process. 2018, 2018, 103. [Google Scholar] [CrossRef]
- Fan, X.S.; Min, L.; Li, J.L.; Guo, H.W.; Feng, L.P.; Xu, Z.Y. Dim and Small Target Detection Based on Spiral Gradient Optimization Estimation and High-Order Correlation Enhancement. IEEE Access 2022, 10, 14767–14778. [Google Scholar] [CrossRef]
- Jiang, D.; Li, G.F.; Sun, Y.; Kong, J.Y.; Tao, B. Gesture recognition based on skeletonization algorithm and CNN with ASL database. Multimed. Tools Appl. 2019, 78, 29953–29970. [Google Scholar] [CrossRef]
- Hu, J.B.; Sun, Y.; Li, G.F.; Jiang, G.Z.; Tao, B. Probability analysis for grasp planning facing the field of medical robotics. Measurement 2019, 141, 227–234. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, B. Image Segmentation Technology and Its Application in Digital Image Processing. In Proceedings of the 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), Dalian, China, 14–16 April 2021. [Google Scholar]
- Qi, Y.; Yang, Z.; Sun, W.; Lou, M.; Lian, J.; Zhao, W.; Deng, X. A Comprehensive Overview of Image Enhancement Techniques. Arch. Comput. Methods Eng. 2022, 29, 583–607. [Google Scholar] [CrossRef]
- Sun, Y.; Tian, J.; Jiang, D.; Tao, B.; Liu, Y.; Yun, J.; Chen, D. Numerical simulation of thermal insulation and longevity performance in new lightweight ladle. Concurr. Comput. Pract. Exp. 2020, 32, e5830. [Google Scholar] [CrossRef]
- Tian, C.W.; Fei, L.K.; Zheng, W.X.; Xu, Y.; Zuo, W.M.; Lin, C.W. Deep learning on image denoising: An overview. Neural Netw. 2020, 131, 251–275. [Google Scholar] [CrossRef]
- Goyal, B.; Dogra, A.; Agrawal, S.; Sohi, B.S.; Sharma, A. Image denoising review: From classical to state-of-the-art approaches. Inf. Fusion 2020, 55, 220–244. [Google Scholar] [CrossRef]
- Liu, J.; Malekzadeh, M.; Mirian, N.; Song, T.-A.; Liu, C.; Dutta, J. Artificial Intelligence-Based Image Enhancement in PET Imaging: Noise Reduction and Resolution Enhancement. PET Clin. 2021, 16, 553–576. [Google Scholar] [CrossRef]
- Huang, S.C.; Cheng, F.C.; Chiu, Y.S. Efficient Contrast Enhancement Using Adaptive Gamma Correction With Weighting Distribution. IEEE Trans. Image Process. 2013, 22, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.G.; Sang, N.; Hu, X.R. Global brightness and local contrast adaptive enhancement for low illumination color image. Optik 2014, 125, 1795–1799. [Google Scholar] [CrossRef]
- Rahman, H.; Paul, G.C. Tripartite sub-image histogram equalization for slightly low contrast gray-tone image enhancement. Pattern Recognit. 2023, 134, 109043. [Google Scholar] [CrossRef]
- Liu, C.W.; Sui, X.B.; Kuang, X.D.; Liu, Y.; Gu, G.H.; Chen, Q. Optimized Contrast Enhancement for Infrared Images Based on Global and Local Histogram Specification. Remote Sens. 2019, 11, 849. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.M.; Zhang, S.Q.; IEEE. Research on Image Enhancement Algorithm of Coal Mine Dust. In Proceedings of the 1st Annual International Conference on Sensor Networks and Signal Processing (SNSP), Xi’an, China, 28–31 October 2018; pp. 261–265. [Google Scholar] [CrossRef]
- Niu, W.; He, J.; Liu, X.; Huang, L.; Zhao, X. An Adaptive Recovering Algorithm for The Color Bar Code Image Based on Gamma Transforms. J. Phys. Conf. Ser. 2021, 1952, 022029. [Google Scholar] [CrossRef]
- Saravanan, S.; Karthigaivel, R. A fuzzy and spline based dynamic histogram equalization for contrast enhancement of brain images. Int. J. Imaging Syst. Technol. 2021, 31, 802–827. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, X.; Wang, T. Low-illumination image enhancement algorithm based on multi-feature fusion. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 799, p. 012038. [Google Scholar] [CrossRef]
- Mustafa, W.A.; Yazid, H.; Khairunizam, W.; Jamlos, M.A.; Zunaidi, I.; Razlan, Z.M.; Shahriman, A.B. Image Enhancement Based on Discrete Cosine Transforms (DCT) and Discrete Wavelet Transform (DWT): A Review. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 557, p. 012027. [Google Scholar] [CrossRef]
- Banerjee, A.; Shivakumara, P.; Pal, S.; Pal, U.; Liu, C.L. DCT-DWT-FFT Based Method for Text Detection in Underwater Images. In Proceedings of the 6th Asian Conference on Pattern Recognition (ACPR), Jeju Island, Republic of Korea, 9–12 November 2021; Volume 13189, pp. 218–233. [Google Scholar] [CrossRef]
- Ji, W.; Qian, Z.J.; Xu, B.; Zhao, D.A. A nighttime image enhancement method based on Retinex and guided filter for object recognition of apple harvesting robot. Int. J. Adv. Robot. Syst. 2018, 15, 1729881417753871. [Google Scholar] [CrossRef] [Green Version]
- Priyanka, S.A.; Wang, Y.K.; Huang, S.Y. Low-Light Image Enhancement by Principle Component Analysis. IEEE Access 2019, 7, 3082–3092. [Google Scholar] [CrossRef]
- Rahman, Z.; Aamir, M.; Pu, Y.F.; Ullah, F.; Dai, Q. A Smart System for Low-Light Image Enhancement with Color Constancy and Detail Manipulation in Complex Light Environments. Symmetry 2018, 10, 718. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhao, Z.; Jiang, D.; Tong, X.; Tao, B.; Jiang, G.; Kong, J.; Yun, J.; Liu, Y.; Liu, X.; et al. Low-Illumination Image Enhancement Algorithm Based on Improved Multi-Scale Retinex and ABC Algorithm Optimization. Front. Bioeng. Biotechnol. 2022, 10, 865820. [Google Scholar] [CrossRef]
- Liu, S.X.; Long, W.; Li, Y.Y.; Cheng, H. Low-light image enhancement based on membership function and gamma correction. Multimed. Tools Appl. 2022, 81, 22087–22109. [Google Scholar] [CrossRef]
- Zhang, H.F.; Su, W.; Yu, J.; Wang, Z.F. Identity-Expression Dual Branch Network for Facial Expression Recognition. IEEE Trans. Cogn. Dev. Syst. 2021, 13, 898–911. [Google Scholar] [CrossRef]
- Kanmani, M.; Narsimhan, V. An image contrast enhancement algorithm for grayscale images using particle swarm optimization. Multimed. Tools Appl. 2018, 77, 23371–23387. [Google Scholar] [CrossRef]
- Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar] [CrossRef]
- David, D.; IEEE. Low Illumination Image Enhancement Algorithm Using Iterative Recursive Filter And Visual Gamma Transformation Function. In Proceedings of the Fifth International Conference on Advances in Computing and Communications (ICACC), Kochi, India, 3–5 September 2015; pp. 408–411. [Google Scholar] [CrossRef]
- Sawangtong, W.; Sawangtong, P. An analytical solution for the Caputo type generalized fractional evolution equation. Alex. Eng. J. 2022, 61, 5475–5483. [Google Scholar] [CrossRef]
Metrics | Original Image | MSR | CLAHE | HF | PSO | Proposed Algorithm |
---|---|---|---|---|---|---|
ALSD | 25.85 | 31.24 | 44.24 | 55.94 | 38.52 | 73.47 |
AG | 3.91 | 4.29 | 5.11 | 7.12 | 6.93 | 8.54 |
IE | 6.27 | 6.72 | 6.69 | 7.15 | 6.79 | 7.23 |
Contrast | 16,376.2 | 16,720.2 | 19,597.3 | 21,334.9 | 18,978.3 | 23,399.8 |
Metrics | Original Image | MSR | CLAHE | HF | PSO | Proposed Algorithm |
---|---|---|---|---|---|---|
ALSD | 29.62 | 35.43 | 39.66 | 42.15 | 39.89 | 44.71 |
AG | 6.34 | 6.94 | 7.65 | 7.79 | 6.82 | 8.36 |
IE | 6.11 | 7.38 | 7.26 | 7.42 | 7.14 | 7.96 |
Contrast | 24,770.7 | 26,014.6 | 27,043.7 | 27,335.3 | 26,506.9 | 27,646.2 |
Metrics | Original Image | MSR | CLAHE | HF | PSO | Proposed Algorithm |
---|---|---|---|---|---|---|
ALSD | 27.74 | 33.34 | 41.95 | 49.05 | 39.21 | 59.09 |
AG | 5.16 | 5.62 | 6.38 | 7.46 | 6.88 | 8.45 |
IE | 6.19 | 7.05 | 6.98 | 6.97 | 6.91 | 7.60 |
Contrast | 20,573.5 | 21,367.4 | 23,320.5 | 24,335.1 | 227,426 | 25,523.1 |
Metrics | Precision | Recall | F1-Score | |
---|---|---|---|---|
Dataset | ||||
Original image | 89.89% | 90.07% | 89.47% | |
Enhanced image | 92.44% | 93.44% | 92.44% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, L.; Qi, P.; Lu, H.; Liu, X.; Hua, D.; Guo, X. Image Enhancement Method in Underground Coal Mines Based on an Improved Particle Swarm Optimization Algorithm. Appl. Sci. 2023, 13, 3254. https://doi.org/10.3390/app13053254
Dai L, Qi P, Lu H, Liu X, Hua D, Guo X. Image Enhancement Method in Underground Coal Mines Based on an Improved Particle Swarm Optimization Algorithm. Applied Sciences. 2023; 13(5):3254. https://doi.org/10.3390/app13053254
Chicago/Turabian StyleDai, Lili, Peng Qi, He Lu, Xinhua Liu, Dezheng Hua, and Xiaoqiang Guo. 2023. "Image Enhancement Method in Underground Coal Mines Based on an Improved Particle Swarm Optimization Algorithm" Applied Sciences 13, no. 5: 3254. https://doi.org/10.3390/app13053254
APA StyleDai, L., Qi, P., Lu, H., Liu, X., Hua, D., & Guo, X. (2023). Image Enhancement Method in Underground Coal Mines Based on an Improved Particle Swarm Optimization Algorithm. Applied Sciences, 13(5), 3254. https://doi.org/10.3390/app13053254