Multi-Dimensional Evaluation of Land Comprehensive Carrying Capacity Based on a Normal Cloud Model and Its Interactions: A Case Study of Liaoning Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methodology
2.3.1. Construction of LCCC Evaluation Index System for Liaoning Province
2.3.2. Evaluation Model Based on Normal Cloud
2.3.3. Coupling Coordination Degree Model
2.4. Normal Cloud Membership Degree of Different Grades
3. Results
3.1. Evaluation of LCCC
3.2. Coupling and Coordination Degrees Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, X.; Li, C. Paradigm Shift in the Study of Land Carrying Capacity: An Overview. J. Nat. Resour. 2018, 33, 526–540. [Google Scholar]
- Wang, X. Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security. Land 2022, 11, 484. [Google Scholar] [CrossRef]
- Jing, Y.; Chen, Y. A preliminary analysis of the population supporting capacity of land resources. J. Nat. Resour. 2006, 11–14. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2006&filename=ZGRZ200605002&uniplatform=NZKPT&v=sJkZRVpm2XACEQfaQ2mcwx2q5COXRikQw9FuD9HCqcZpCO62FQyF7mmuwIZSq9d2 (accessed on 28 February 2023).
- Feng, Z. The past, present and future of land carrying capacity research. China Land Sci. 1994, 8, 1–9. [Google Scholar]
- Bicknell, K.B.; Ball, R.J.; Cullen, R.; Bigsby, H.R. New Methodology for the Ecological Footprint with an Application to the New Zealand Economy. Ecol. Econ. 1998, 27, 149–160. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Li, J.; Lu, B.; Luo, M.; Li, L. Exploring the Spatial Pattern and Influencing Factors of Land Carrying Capacity in Wuhan. Sustainability 2019, 11, 2786. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Wang, H.; Yin, C. Evaluation Method of Urban Land Population Carrying Capacity Based on GIS—A Case of Shanghai, China. Comput. Environ. Urban Syst. 2013, 39, 27–38. [Google Scholar] [CrossRef]
- Irankhahi, M.; Jozi, S.A.; Farshchi, P.; Shariat, S.M.; Liaghati, H. Combination of GISFM and TOPSIS to Evaluation of Urban Environment Carrying Capacity (Case Study: Shemiran City, Iran). Int. J. Environ. Sci. Technol. 2017, 14, 1317–1332. [Google Scholar] [CrossRef]
- Qian, Y.; Tang, L.; Qiu, Q.; Xu, T.; Liao, J. A Comparative Analysis on Assessment of Land Carrying Capacity with Ecological Footprint Analysis and Index System Method. PLoS ONE 2015, 10, e0130315. [Google Scholar] [CrossRef]
- Lein, J.K. Mapping Environmental Carrying Capacity Using an Artificial Neural Network: A First Experiment. Land Degrad. Dev. 1995, 6, 17–28. [Google Scholar] [CrossRef]
- Van Den Bergh, J.C.J.M. A Framework for Modelling Economy-Environment-Development Relationships Based on Dynamic Carrying Capacity and Sustainable Development Feedback. Environ. Resour. Econ. 1993, 3, 395–412. [Google Scholar] [CrossRef]
- Lane, M. The Carrying Capacity Imperative: Assessing Regional Carrying Capacity Methodologies for Sustainable Land-Use Planning. Land Use Policy 2010, 27, 1038–1045. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Liu, F.; Liu, J.; Xiao, X.; Qin, Y. Status of Land Use Intensity in China and Its Impacts on Land Carrying Capacity. J. Geogr. Sci. 2017, 27, 387–402. [Google Scholar] [CrossRef] [Green Version]
- Graymore, M.L.M.; Sipe, N.G.; Rickson, R.E. Sustaining Human Carrying Capacity: A Tool for Regional Sustainability Assessment. Ecol. Econ. 2010, 69, 459–468. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, L.; Liu, Z.; Wen, N. Research progress on identification of key influencing factors and typical evaluation models of cultivated land resource carrying capacity. J. Agric. Resour. Environ. 2020, 37, 829–844. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, A.; Zhang, D. Evaluation of Resources and Environmental Carrying Capacity and Its Spatial-Temporal Dynamic Evolution: A Case Study in Shandong Province, China. Sustain. Cities Soc. 2022, 82, 103916. [Google Scholar] [CrossRef]
- Luo, W.; Jin, C.; Shen, L. The Evolution of Land Resource Carrying Capacity in 35 Major Cities in China. Sustainability 2022, 14, 5178. [Google Scholar] [CrossRef]
- Cao, X.; Shi, Y.; Zhou, L. Research on Urban Carrying Capacity Based on Multisource Data Fusion—A Case Study of Shanghai. Remote Sens. 2021, 13, 2695. [Google Scholar] [CrossRef]
- Ye, F.; Park, J.; Wang, F.; Hu, X. Analysis of Early Warning Spatial and Temporal Differences of Tourism Carrying Capacity in China’s Island Cities. Sustainability 2020, 12, 1328. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Liu, C.; Gan, W. A New Cognitive Model: Cloud Model. Int. J. Intell. Syst. 2009, 24, 357–375. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Zhu, S.; Xie, Y. Application of the Cloud Model Synthesis Method in Ecological Evaluation of Waterways. Math. Probl. Eng. 2022, 2022, e9382277. [Google Scholar] [CrossRef]
- Yaxian, G.; Wei, L.; Gang, H.; Shuhang, Z. Evaluation of Industrial Ecological Security in Industrial Transformation Demonstration Area Based on Spatiotemporal Differentiation. Geomat. Nat. Hazards Risk 2022, 13, 1422–1440. [Google Scholar] [CrossRef]
- Baohui, M.; Tuoku, L. Water Environment Carrying Capacity Evaluation by Cloud Theory in Beijing. Nat. Environ. Pollut. Technol. 2020, 19, 839–844. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y. Variable Precondition S-Type Cloud Algorithm: Theory and Application on Water Resources Carrying Capacity Assessment. Ecol. Indic. 2021, 121, 107209. [Google Scholar] [CrossRef]
- Liu, P.; Lü, S.; Han, Y.; Wang, F.; Tang, L. Comprehensive Evaluation on Water Resources Carrying Capacity Based on Water-Economy-Ecology Concept Framework and EFAST-Cloud Model: A Case Study of Henan Province, China. Ecol. Indic. 2022, 143, 109392. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, J.; Zhou, M. Efficient Synthesis of Substituted Pyrroles through Iron-Mediated Oxidation Reaction of 3-Methylenehexane-2,5-Dione with Primary Amines. Synth. Commun. 2019, 49, 32–38. [Google Scholar] [CrossRef]
- Qiang, F.; Fanxiang, M.; Tianxiao, L.; Dong, L.; Fanli, G.; Osman, A.; Yutong, L. Cloud Model-Based Analysis of Regional Sustainable Water Resource Utilization Schemes. Int. J. Agric. Biol. Eng. 2016, 9, 67–75. [Google Scholar] [CrossRef]
- Yue, W.; Dai, Z.; Gao, J.; Chen, Y. Study on the Evaluation of Resources and Environment Carrying Capacity for Provincial Territorial Planning. China Land Sci. 2018, 32, 66–73. [Google Scholar]
- Yue, W.; Wang, T. Logical Problems on the Evaluation of Resources and Environment Carrying Capacity for Territorial Spatial Planning. China Land Sci. 2019, 33, 1–8. [Google Scholar]
- Liu, Y.; Zhou, Y. Territory Spatial Planning and National Governance System in China. Land Use Policy 2021, 102, 105288. [Google Scholar] [CrossRef]
- Zhang, D.; Zhu, L.; Ma, X.; Liu, Z.; Cui, H. Uncoordinated Coupling Assessment of New Urbanization and Ecological Carrying Capacity in the Yellow River Basin. Int. J. Environ. Res. Public Health 2022, 19, 9016. [Google Scholar] [CrossRef] [PubMed]
- Iguna, S.; Sudrajat, S.; Harini, R. The Profile of Land Carrying Capacity and Food Security in Gunungkidul Regency, Yogyakarta. Media Komun. Geogr. 2022, 23, 58–72. [Google Scholar] [CrossRef]
- Lane, M.; Dawes, L.; Grace, P. The Essential Parameters of a Resource-Based Carrying Capacity Assessment Model: An Australian Case Study. Ecol. Model. 2014, 272, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P.; Folke, C.; Holling, C.S.; Jansson, B.-O.; Levin, S.; Mäler, K.-G.; Perrings, C.; et al. Economic Growth, Carrying Capacity, and the Environment. Environ. Dev. Econ. 1996, 1, 104–110. [Google Scholar] [CrossRef]
- Clarke, A.L. Assessing the Carrying Capacity of the Florida Keys. Popul. Environ. 2002, 23, 405–418. [Google Scholar] [CrossRef]
- Khorshidi, H.A.; Aickelin, U. Multicriteria Group Decision-Making under Uncertainty Using Interval Data and Cloud Models. J. Oper. Res. Soc. 2021, 72, 2542–2556. [Google Scholar] [CrossRef]
- Koç, M.L.; Imren Koç, D. A Cloud Theory Based Reliability Analysis Method and Its Application to Reliability Problems of Breakwaters. Ocean. Eng. 2020, 209, 107534. [Google Scholar] [CrossRef]
- Wang, G.; Xu, C.; Li, D. Generic Normal Cloud Model. Inf. Sci. 2014, 280, 1–15. [Google Scholar] [CrossRef]
- Mandal, S.; Khan, D.A. Cloud-CoCoSo: Cloud Model-Based Combined Compromised Solution Model for Trusted Cloud Service Provider Selection. Arab. J. Sci. Eng. 2022, 47, 10307–10332. [Google Scholar] [CrossRef]
- He, G.; Ruan, J. Study on Ecological Security Evaluation of Anhui Province Based on Normal Cloud Model. Environ. Sci. Pollut. Res. 2022, 29, 16549–16562. [Google Scholar] [CrossRef]
- Li, J.; Sun, W.; Li, M. Linlin Meng Coupling Coordination Degree of Production, Living and Ecological Spaces and Its Influencing Factors in the Yellow River Basin. J. Clean. Prod. 2021, 298, 126803. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a Coupling Model of Coordination between Urbanization and the Environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Ke, Z.; Xia, Q. Study on Coordination Development of Ecological-Environment and Economy Based on Coupling Model: A Case Study of Wuhan City. Fresenius Environ. Bull. 2019, 28, 4007–4012. [Google Scholar]
- Yuan, J.; Bian, Z.; Yan, Q.; Pan, Y. Spatio-Temporal Distributions of the Land Use Efficiency Coupling Coordination Degree in Mining Cities of Western China. Sustainability 2019, 11, 5288. [Google Scholar] [CrossRef] [Green Version]
- Lyu, C.; Zhang, H.; Liu, S.; Guo, Y. Fishing Capacity Evaluation of Fishing Vessel Based on Cloud Model. Sci. Rep. 2022, 12, 8976. [Google Scholar] [CrossRef] [PubMed]
- Jenks, G. The Data Model Concept in Statistical Mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Howard, H.H.; McMaster, R.B.; Slocum, T.A.; Kessler, F.C. Thematic Cartography and Geovisualization; Prentice Hall: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Li, D.; Liu, C. Study on the Universality of the Normal Cloud Model. Eng. Sci. 2004, 6, 28–34. [Google Scholar]
- Peng, T.; Deng, H.; Lin, Y.; Jin, Z. Assessment on Water Resources Carrying Capacity in Karst Areas by Using an Innovative DPESBRM Concept Model and Cloud Model. Sci. Total Environ. 2021, 767, 144353. [Google Scholar] [CrossRef] [PubMed]
- Liaoning Provincial Department of Natural Resources. Available online: http://zrzy.ln.gov.cn/index.html (accessed on 12 October 2021).
Data Types | Year | Data Descriptions | Coordinate System | Data Sources |
---|---|---|---|---|
Land use data | 2016 | Vector data | WGS84 | The survey results of land use change in Liaoning Province |
Geological data | 2016 | Vector data | WGS84 | The survey results of land use change in Liaoning Province |
DEM | 2000 | Grid data | WGS84 | http://www.resdc.cn/ (accessed on 8 August 2020) |
Resource and Environmental Data | 2016 | Statistical data | China City Statistical Yearbook | |
Economic Data | 2016 | Statistical data | WGS84 | China City Statistical Yearbook |
Urban Construction Data | 2016 | Statistical data | WGS84 | China City Statistical Yearbook |
Subsystem | Number | Indicator | Attribute | Weight |
---|---|---|---|---|
Geological condition | A1 | Slope | Negative | 0.03 |
A2 | The area ratio of settlement area | Negative | 0.05 | |
A3 | The area ratio of geological disaster-prone areas | Negative | 0.02 | |
Resources and environment | A4 | Per capita cultivated land area | Forward | 0.07 |
A5 | Per capita water resources | Forward | 0.15 | |
A6 | Discharge of industrial wastewater per 10,000 yuan Gross Domestic Product (GDP) | Negative | 0.02 | |
A7 | The application amount of chemical fertilizer | Negative | 0.03 | |
A8 | Industrial sulfur dioxide emissions of 100 million yuan GDP | Negative | 0.02 | |
A9 | The comprehensive utilization rate of general solid waste (%) | Forward | 0.03 | |
Economic scale | A10 | Grain yield per unit area | Forward | 0.05 |
A11 | Per capita GDP | Forward | 0.10 | |
A12 | Per capita disposable income of urban residents | Forward | 0.05 | |
A13 | Average investment in fixed assets | Forward | 0.12 | |
A14 | Average GDP | Forward | 0.04 | |
Urban construction | A15 | Urbanization rate | Forward | 0.05 |
A16 | Urban population density | Negative | 0.03 | |
A17 | Per capita urban road area | Forward | 0.03 | |
A18 | Per capita construction land area | Forward | 0.06 | |
A19 | Per capita park green area | Forward | 0.05 |
Number | Different Evaluation Grades Ex, En, He | ||||
---|---|---|---|---|---|
Low | Lower | Medium | Higher | High | |
A1 | (10.79, 2.84, 0.10) | (6.20, 1.07, 0.01) | (3.88, 0.90, 0.01) | (1.95, 0.73, 0.01) | (0.74, 0.29, 0.01) |
A2 | (91.13, 7.01, 0.10) | (52.88, 25.47, 1.00) | (14.58, 7.05, 0.10) | (3.85, 2.06, 0.10) | (0.71, 0.60, 0.01) |
A3 | (19.63, 3.46, 0.10) | (13.23, 1.97, 0.10) | (8.50, 2.04, 0.10) | (3.90, 1.87, 0.10) | (0.85, 0.72, 0.01) |
A4 | (0.06, 0.01, 0.001) | (0.08, 0.01, 0.001) | (0.10, 0.01, 0.001) | (0.14, 0.02, 0.001) | (0.22, 0.05, 0.001) |
A5 | (304.08, 13.30, 1.00) | (381.17, 52.17, 1.00) | (857.95, 352.74, 1.00) | (1648.39, 318.54, 1.00) | (2624.87, 510.7, 1.00) |
A6 | (5.44, 1.16, 0.01) | (3.54, 0.45, 0.01) | (2.61, 0.33, 0.01) | (1.61, 0.52, 0.01) | (0.84, 0.14, 0.01) |
A7 | (59.15, 5.48, 0.10) | (39.15, 11.51, 0.10) | (22.80, 2.38, 0.10) | (14.50, 4.67, 0.10) | (6.70, 1.95, 0.10) |
A8 | (530.7, 182.5, 10) | (221.04, 80.39, 5.00) | (104.08, 18.94, 1.00) | (58.16, 20.05, 1.00) | (31.80, 2.34, 0.10) |
A9 | (14.21, 6.97, 0.50) | (33.72, 9.59, 0.50) | (54.65, 8.18, 0.50) | (75.39, 9.44, 0.50) | (90.91, 3.74, 0.10) |
A10 | (50488, 166.1, 10) | (5793, 466.8, 10) | (6584, 204.99, 10) | (7075,212.02,10) | (8121.67, 676.58, 30.00) |
A11 | (23,785.00, 1326.54, 100.00) | (30,746.00, 4585.14, 400.00) | (38,943.00, 2376.22, 200.00) | (44,549.55, 2385.18, 200.00) | (72,413.85, 21,278.77, 2000.00) |
A12 | (22,884.00, 930.79, 50.00) | (25,159.00, 1001.27, 50.00) | (27,737.50, 1188.54, 50.00) | (31,729.50, 2201.70, 100.00) | (36,728.50, 2043.74, 100.00) |
A13 | (112.66, 22.70, 1.00) | (209.38, 59.44, 3.00) | (395.60, 98.70, 5.00) | (647.17, 114.94, 5.00) | (1131.01, 295.97, 10.00) |
A14 | (492.69, 109.50, 10.00) | (824.80, 172.55, 10.00) | (1303.82, 234.26, 10.00) | (2035.26, 386.92, 20.00) | (3953.48, 1242.14, 80.00) |
A15 | (46.65, 1.81, 0.10) | (53.59, 4.08, 0.10) | (62.14, 3.18, 0.10) | (70.68, 4.08, 0.10) | (78.02, 2.15, 0.10) |
A16 | (2622.50, 249.26, 15.00) | (2026.00, 257.32, 15.00) | (1418.50, 258.60, 15.00) | (858.00, 217.41, 10.00) | (564.00, 32.27, 3.00) |
A17 | (6.51, 0.43, 0.01) | (9.36, 1.99, 0.01) | (12.29, 0.50, 0.01) | (13.58, 0.60, 0.01) | (16.79, 2.13, 0.01) |
A18 | (353.35, 5.72, 0.10) | (405.57, 38.63, 1.00) | (455.92, 4.13, 0.10) | (471.43, 9.04, 0.10) | (533.90, 44.00, 1.00) |
A19 | (9.41, 0.35, 0.01) | (10.29, 0.39, 0.01) | (10.92, 0.14, 0.01) | (11.53, 0.37, 0.01) | (13.35, 1.17, 0.01) |
City | Geological Condition | Resources and Environment | Economic Scale | Urban Construction | LCCC |
---|---|---|---|---|---|
Shenyang City | 0.23 | 0.92 | 1.42 | 0.65 | 3.22 |
Dalian | 0.26 | 0.89 | 1.48 | 0.62 | 3.24 |
Anshan | 0.21 | 0.96 | 1.22 | 0.61 | 3.00 |
Fushun | 0.24 | 1.12 | 1.08 | 0.61 | 3.06 |
Benxi | 0.25 | 1.13 | 1.14 | 0.64 | 3.16 |
Dandong | 0.26 | 1.54 | 0.68 | 0.58 | 3.07 |
Jinzhou | 0.26 | 1.33 | 0.72 | 0.61 | 2.92 |
Yingkou | 0.27 | 1.28 | 0.79 | 0.65 | 2.98 |
Fuxin | 0.22 | 1.22 | 0.67 | 0.64 | 2.74 |
Liaoyang | 0.20 | 1.26 | 0.74 | 0.69 | 2.88 |
Panjin | 0.23 | 1.31 | 0.85 | 0.66 | 3.06 |
Tieling | 0.29 | 1.36 | 0.68 | 0.61 | 2.94 |
Chaoyang City | 0.22 | 1.26 | 0.67 | 0.67 | 2.83 |
Huludao | 0.27 | 1.13 | 0.67 | 0.69 | 2.77 |
City | Coupling Degree | Coupling Stage | Degree of Coordination | Coordination Phase |
---|---|---|---|---|
Shenyang | 0.8267 | Barely coupled | 0.8162 | Quality coordination |
Dalian | 0.8349 | Barely coupled | 0.8228 | Quality coordination |
Anshan | 0.8305 | Barely coupled | 0.7897 | Primary coordination |
Fushun | 0.8521 | Inter-mediate coupling | 0.8071 | Good coordination |
Benxi | 0.8527 | Inter-mediate coupling | 0.8214 | Quality coordination |
Dandong | 0.8245 | Barely coupled | 0.7953 | Intermediate coordination |
Jinzhou | 0.8553 | Inter-mediate coupling | 0.7904 | Primary coordination |
Yingkou | 0.8665 | Good coupling | 0.8040 | Good coordination |
Fuxin | 0.8448 | Primary coupling | 0.7612 | Reluctantly coordinate |
Liaoyang | 0.8309 | Barely coupled | 0.7740 | Reluctantly coordinate |
Panjin | 0.8426 | Primary coupling | 0.8025 | Good coordination |
Tieling | 0.8673 | Good coupling | 0.7986 | Intermediate coordination |
Chaoyang | 0.8435 | Primary coupling | 0.7730 | Reluctantly coordinate |
Huludao | 0.8907 | Good coupling | 0.7849 | Primary coordination |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Zhang, X.; Yu, W.; Gao, Y.; Xue, Y.; Sun, W.; Sun, D. Multi-Dimensional Evaluation of Land Comprehensive Carrying Capacity Based on a Normal Cloud Model and Its Interactions: A Case Study of Liaoning Province. Appl. Sci. 2023, 13, 3336. https://doi.org/10.3390/app13053336
Yu H, Zhang X, Yu W, Gao Y, Xue Y, Sun W, Sun D. Multi-Dimensional Evaluation of Land Comprehensive Carrying Capacity Based on a Normal Cloud Model and Its Interactions: A Case Study of Liaoning Province. Applied Sciences. 2023; 13(5):3336. https://doi.org/10.3390/app13053336
Chicago/Turabian StyleYu, Huisheng, Xinyue Zhang, Wenbo Yu, Yanpeng Gao, Yuyu Xue, Wei Sun, and Dongqi Sun. 2023. "Multi-Dimensional Evaluation of Land Comprehensive Carrying Capacity Based on a Normal Cloud Model and Its Interactions: A Case Study of Liaoning Province" Applied Sciences 13, no. 5: 3336. https://doi.org/10.3390/app13053336
APA StyleYu, H., Zhang, X., Yu, W., Gao, Y., Xue, Y., Sun, W., & Sun, D. (2023). Multi-Dimensional Evaluation of Land Comprehensive Carrying Capacity Based on a Normal Cloud Model and Its Interactions: A Case Study of Liaoning Province. Applied Sciences, 13(5), 3336. https://doi.org/10.3390/app13053336