Antibacterial Activity of Tanacetum vulgare L. Extracts against Clinical Isolates of Bovine Mastitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Harvest and Identification
2.2. Extract Preparation
2.3. Bacterial Cultures
2.4. Antibacterial Susceptibility—Agar Disc Diffusion Test
2.5. Broth Microdilution Method for Determination of Minimum Inhibitory Concentration and Minimal Bactericidal Concentration
2.6. Total Phenolic Content
2.7. Fourier Transform Infrared Spectroscopy
2.8. Statistical Analysis
3. Results
3.1. Characterization of Plant Samples by Fourier Transform Infrared Spectroscopy (FTIR)
3.2. Total Phenolic Content
3.3. Antibacterial Effects of T. vulgare Extracts
3.3.1. Antibacterial Susceptibility—Agar Disc Diffusion Test
3.3.2. Broth Microdilution Method for Determination of Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heikkilä, A.-M.; Liski, E.; Pyörälä, S.; Taponen, S. Pathogen-Specific Production Losses in Bovine Mastitis. J. Dairy Sci. 2018, 101, 9493–9504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, J.L.; Kamphuis, C.; Martins, C.M.M.R.; Barreiro, J.R.; Tomazi, T.; Gameiro, A.H.; Hogeveen, H.; dos Santos, M.V. Bovine Subclinical Mastitis Reduces Milk Yield and Economic Return. Livest. Sci. 2018, 210, 25–32. [Google Scholar] [CrossRef]
- Guzmán-Luna, P.; Nag, R.; Martínez, I.; Mauricio-Iglesias, M.; Hospido, A.; Cummins, E. Quantifying Current and Future Raw Milk Losses Due to Bovine Mastitis on European Dairy Farms under Climate Change Scenarios. Sci. Total Environ. 2022, 833, 155149. [Google Scholar] [CrossRef]
- Feliciano, R.; Boué, G.; Mohssin, F.; Hussaini, M.M.; Membré, J.-M. Probabilistic Modelling of Escherichia Coli Concentration in Raw Milk under Hot Weather Conditions. Food Res. Int. 2021, 149, 110679. [Google Scholar] [CrossRef]
- Cheng, W.N.; Han, S.G. Bovine Mastitis: Risk Factors, Therapeutic Strategies, and Alternative Treatments—A Review. Asian-Australas. J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Akram, S.; Stedtfeld, R.; Johnson, M.; Chabrelie, A.; Yin, D.; Mitchell, J. Distribution of Antimicrobial Resistance across the Overall Environment of Dairy Farms—A Case Study. Sci. Total Environ. 2021, 788, 147489. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines On Use Of Medically Important Antimicrobials in Food-Producing Animals; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- EIP-AGRI Agriculture and Innovation. Quality Low Input Food Project Mastitis Control in Organic Dairy. Available online: https://ec.europa.eu/eip/agriculture/en/content/mastitis-control-organic-dairy (accessed on 1 December 2022).
- Mayer, M.; Vogl, C.R.; Amorena, M.; Hamburger, M.; Walkenhorst, M. Treatment of Organic Livestock with Medicinal Plants: A Systematic Review of European Ethnoveterinary Research. Complement. Med. Res. 2014, 21, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Phillips, H.N.; Heins, B.J. Alternative Practices in Organic Dairy Production and Effects on Animal Behavior, Health, and Welfare. Animals 2022, 12, 1785. [Google Scholar] [CrossRef]
- Mushtaq, S.; Shah, A.M.; Shah, A.; Lone, S.A.; Hussain, A.; Hassan, Q.P.; Ali, M.N. Bovine Mastitis: An Appraisal of Its Alternative Herbal Cure. Microb. Pathog. 2018, 114, 357–361. [Google Scholar] [CrossRef]
- Ruegg, P.L. Management of Mastitis on Organic and Conventional Dairy Farms. J. Anim. Sci. 2009, 87, 43–55. [Google Scholar] [CrossRef]
- Aćimović, M.; Puvača, N. Tanacetum vulgare L.—A Systematic Review. Technol. Eng. Manag. J. Agron. Technol. Eng. Manag. 2020, 2020, 416–422. [Google Scholar]
- Nurzyńska-Wierdak, R.; Sałata, A.; Kniaziewicz, M. Tansy (Tanacetum vulgare L.)—A Wild-Growing Aromatic Medicinal Plant with a Variable Essential Oil Composition. Agronomy 2022, 12, 277. [Google Scholar] [CrossRef]
- Keskitalo, M.; Pehu, E.; Simon, J.E. Variation in Volatile Compounds from Tansy (Tanacetum vulgare L.) Related to Genetic and Morphological Differences of Genotypes. Biochem. Syst. Ecol. 2001, 29, 267–285. [Google Scholar] [CrossRef]
- Rohloff, J.; Mordal, R.; Dragland, S. Chemotypical Variation of Tansy (Tanacetum vulgare L.) from 40 Different Locations in Norway. J. Agric. Food Chem. 2004, 52, 1742–1748. [Google Scholar] [CrossRef]
- Mihaylova, D.; Vrancheva, R.; Desseva, I.; Ivanov, I.; Dincheva, I.; Popova, M.; Popova, A. Analysis of the GC-MS of Volatile Compounds and the Phytochemical Profile and Antioxidant Activities of Some Bulgarian Medicinal Plants. Z. Nat. C 2018, 74, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Mihaylova, D.; Vrancheva, R.; Petkova, N.; Ognyanov, M.; Desseva, I.; Ivanov, I.; Popova, M.; Popova, A. Carotenoids, Tocopherols, Organic Acids, Charbohydrate and Mineral Content in Different Medicinal Plant Extracts. Z. Nat. C 2018, 73, 439–448. [Google Scholar] [CrossRef]
- Ak, G.; Gevrenova, R.; Sinan, K.I.; Zengin, G.; Zheleva, D.; Mahomoodally, M.F.; Senkardes, I.; Brunetti, L.; Leone, S.; di Simone, S.C.; et al. Tanacetum vulgare L. (Tansy) as an Effective Bioresource with Promising Pharmacological Effects from Natural Arsenal. Food Chem. Toxicol. 2021, 153, 112268. [Google Scholar] [CrossRef]
- Barceloux, D.G. Tansy (Tanacetum vulgare L.). In Medical Toxicology of Natural Substances; Chapter 93; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 614–616. [Google Scholar]
- Mitich, L.W. Tansy. Weed Technol. 1992, 6, 242–244. [Google Scholar] [CrossRef]
- Sowa, P.; Marcinčáková, D.; Miłek, M.; Sidor, E.; Legáth, J.; Dżugan, M. Analysis of Cytotoxicity of Selected Asteraceae Plant Extracts in Real Time, Their Antioxidant Properties and Polyphenolic Profile. Molecules 2020, 25, 5517. [Google Scholar] [CrossRef]
- Onozato, T.; Nakamura, C.V.; Cortez, D.A.G.; Filho, B.P.D.; Ueda-Nakamura, T. Tanacetum vulgare: Antiherpes Virus Activity of Crude Extract and the Purified Compound Parthenolide. Phytother. Res. 2009, 23, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Muresan, M.; Benedec, D.; Vlase, L.; Oprean, R.; Toiu, A.; Oniga, I. Screening of Polyphenolic Compounds, Antioxidant and Antimicrobial Properties of Tanacetum vulgare from Transylvania. Stud. Univ. Babes-Bolyai. Chem. 2015, 60, 12718. [Google Scholar]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A.; Vo, D.-V.N.; Prabhakar, S. Techniques and Modeling of Polyphenol Extraction from Food: A Review. Environ. Chem. Lett. 2021, 19, 3409–3443. [Google Scholar] [CrossRef]
- Smirnova, G.; Samoilova, Z.; Muzyka, N.; Oktyabrsky, O. Influence of Plant Polyphenols and Medicinal Plant Extracts on Antibiotic Susceptibility of Escherichia coli. J. Appl. Microbiol. 2012, 113, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Effect of Extraction Solvent on Total Phenol Content, Total Flavonoid Content, and Antioxidant Activity of Limnophila Aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Avsejenko, J. Pieredze Un Ieteikumi Govs Mastītu Laboratoriskā Diagnostikā. Vet. Z. 2015, 1, 19–28. [Google Scholar]
- World Health Organization. WHO Guidelines on Good Agricultural and Collection Practices (GACP) for Medicinal Plants; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- EUCAST Clinical Breakpoints—Breakpoints and Guidance. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 7 February 2023).
- Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Mitic Culafic, D.; Trudic, A.; Ranin, L.; Opavski, N. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics 2022, 11, 427. [Google Scholar] [CrossRef]
- Klančnik, A.; Piskernik, S.; Jeršek, B.; Možina, S.S. Evaluation of Diffusion and Dilution Methods to Determine the Antibacterial Activity of Plant Extracts. J. Microbiol. Methods 2010, 81, 121–126. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar]
- Brangule, A.; Šukele, R.; Bandere, D. Herbal Medicine Characterization Perspectives Using Advanced FTIR Sample Techniques—Diffuse Reflectance (DRIFT) and Photoacoustic Spectroscopy (PAS). Front. Plant. Sci. 2020, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Chaves, J.O.; de Souza, M.C.; da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.d.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F.; et al. Extraction of Flavonoids From Natural Sources Using Modern Techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef]
- Ivănescu, B.; Tuchiluș, C.; Corciovă, A.; Lungu, C.; Teodor Mihai, C.; Gheldiu, A.; Vlase, L. Antioxidant, Antimicrobial and Cytotoxic Activity of Tanacetum Vulgare, Tanacetum Corymbosum and Tanacetum Macrophyllum Extracts. Farmacia 2018, 66, 282–288. [Google Scholar]
- Devrnja, N.; Anđelković, B.; Aranđelović, S.; Radulović, S.; Soković, M.; Krstić-Milošević, D.; Ristić, M.; Ćalić, D. Comparative Studies on the Antimicrobial and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Methanol Extracts. S. Afr. J. Bot. 2017, 111, 212–221. [Google Scholar] [CrossRef]
- Williams, C.A.; Harborne, J.B.; Eagles, J. Variations in Lipophilic and Polar Flavonoids in the Genus Tanacetum. Phytochemistry 1999, 52, 1301–1306. [Google Scholar] [CrossRef]
- Williams, C. The Flavonoids of Tanacetum parthenium and T. vulgare and Their Anti-Inflammatory Properties. Phytochemistry 1999, 51, 417–423. [Google Scholar] [CrossRef]
- Šukele, R.; Bandere, D.; Koka, R. Quantitative Analysis of Tannins in Some Herbs of Latvian Flora. In RSU Research Week 2021: Knowledge for Use in Practice; Rīga Stradiņš University: Rīga, Latvia, 2021; p. 395. [Google Scholar]
- Rauha, J.-P.; Remes, S.; Heinonen, M.; Hopia, A.; Kahkonen, M.; Kujala, T.; Pihlaja, K.; Vuorela, H.; Vuorela, P. Antimicrobial Effects of Finnish Plant Extracts Containing Flavonoids and Other Phenolic Compounds. Int. J. Food. Microbiol. 2000, 56, 3–12. [Google Scholar] [CrossRef]
- Morena, A.G.; Bassegoda, A.; Natan, M.; Jacobi, G.; Banin, E.; Tzanov, T. Antibacterial Properties and Mechanisms of Action of Sonoenzymatically Synthesized Lignin-Based Nanoparticles. ACS Appl. Mater. Interfaces 2022, 14, 37270–37279. [Google Scholar] [CrossRef] [PubMed]
- Daglia, M. Polyphenols as Antimicrobial Agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Radulović, N.S.; Genčić, M.S.; Stojanović, N.M.; Randjelović, P.J.; Stojanović-Radić, Z.Z.; Stojiljković, N.I. Toxic Essential Oils. Part V: Behaviour Modulating and Toxic Properties of Thujones and Thujone-Containing Essential Oils of Salvia officinalis L., Artemisia absinthium L., Thuja occidentalis L. and Tanacetum vulgare L. Food Chem. Toxicol. 2017, 105, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Holopainen, M.; Hiltunen, R.; von Schantz, M. A Study on Tansy Chemotypes. Planta Med. 1987, 53, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Bączek, K.B.; Kosakowska, O.; Przybył, J.L.; Pióro-Jabrucka, E.; Costa, R.; Mondello, L.; Gniewosz, M.; Synowiec, A.; Węglarz, Z. Antibacterial and Antioxidant Activity of Essential Oils and Extracts from Costmary (Tanacetum balsamita L.) and Tansy (Tanacetum vulgare L.). Ind. Crops Prod. 2017, 102, 154–163. [Google Scholar] [CrossRef]
- Pașca, C.; Mărghitaș, L.; Dezmirean, D.; Bobiș, O.; Bonta, V.; Chirilă, F.; Matei, I.; Fiț, N. Medicinal Plants Based Products Tested on Pathogens Isolated from Mastitis Milk. Molecules 2017, 22, 1473. [Google Scholar] [CrossRef] [Green Version]
- Šukele, R.; Skadiņš, I.; Koka, R.; Bandere, D. Antibacterial Effects of Oak Bark (Quercus Robur) and Heather Herb (Calluna vulgaris L.) Extracts against the Causative Bacteria of Bovine Mastitis. Vet. World 2022, 15, 2315–2322. [Google Scholar] [CrossRef] [PubMed]
- Diaz, M.A.N.; Rossi, C.C.; Mendonça, V.R.; Silva, D.M.; Ribon, A.d.O.B.; Aguilar, A.P.; Muñoz, G.D. Screening of Medicinal Plants for Antibacterial Activities on Staphylococcus Aureus Strains Isolated from Bovine Mastitis. Rev. Bras. Farmacogn. 2010, 20, 724–728. [Google Scholar] [CrossRef] [Green Version]
- Maia, N.L.; de Barros, M.; de Oliveira, L.L.; Cardoso, S.A.; dos Santos, M.H.; Pieri, F.A.; Ramalho, T.C.; da Cunha, E.F.F.; Moreira, M.A.S. Synergism of Plant Compound with Traditional Antimicrobials Against Streptococcus spp. Isolated from Bovine Mastitis. Front. Microbiol. 2018, 9, 1203. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Huang, X.; Ma, G. Antimicrobial Activities and Mechanisms of Extract and Components of Herbs in East Asia. RSC Adv. 2022, 12, 29197–29213. [Google Scholar] [CrossRef] [PubMed]
- Kuete, V.; Efferth, T. Cameroonian Medicinal Plants: Pharmacology and Derived Natural Products. Front. Pharm. 2010, 1, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bussmann, R.W.; Malca-García, G.; Glenn, A.; Sharon, D.; Chait, G.; Díaz, D.; Pourmand, K.; Jonat, B.; Somogy, S.; Guardado, G.; et al. Minimum Inhibitory Concentrations of Medicinal Plants Used in Northern Peru as Antibacterial Remedies. J. Ethnopharmacol. 2010, 132, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Pinedo, P.; Karreman, H.; Bothe, H.; Velez, J.; Risco, C. Efficacy of a Botanical Preparation for the Intramammary Treatment of Clinical Mastitis on an Organic Dairy Farm. Can. Vet. J. 2013, 54, 479–484. [Google Scholar] [CrossRef]
- Maramulla, A.; Ambica, G.; Kosqapati, L.; Bommu, S.; Katta, P. Efficacy of Herbal Prepararions in the Therapy of Sub Clinical Mastitis in Cows of Periurban Areas of Hyderabad. Pharma Innov. J. 2019, 8, 186–188. [Google Scholar]
- Sanderson, C.J. The Treatment of Mastitis with Intrammary Infusions. Aust. Vet. J. 1966, 42, 47–53. [Google Scholar] [CrossRef]
Extract Sample | Extraction Solvent | TPC GAE mg/g DW ± SD |
---|---|---|
T. vulgare flower extract | Ethanol 30% | 62.5 ±10.9 a |
Ethanol 50% | 63.4 ±3.2 a | |
Ethanol 70% | 62.3 ±9.2 a | |
Acetone 30% | 77.6 ±2.9 b | |
Acetone 50% | 77.4 ±3.4 b | |
Acetone 70% | 76.7 ±3.4 b | |
T. vulgare leaf extract | Ethanol 30% | 28.7 ±9.6 c |
Ethanol 50% | 27.6 ±6.9 c | |
Ethanol 70% | 24.5 ±4.5 c | |
Acetone 30% | 20.9 ±4.1 c | |
Acetone 50% | 28.1 ±3.6 c | |
Acetone 70% | 22.3 ±6.2 c |
Extract Type by Solvent | Inhibition Zone, mm ±SD | ||||||||
---|---|---|---|---|---|---|---|---|---|
S. aureus ATCC 25923 | S. aureus V256 | S. uberis V243 | S. agalactiae V171 | E. coli ATCC 25922 | E. coli V4 | E. coli V252 | Serratia liquefaciens V251 | ||
T. vulgare flower | E30% | n | n | n | n | n | n | n | n |
E50% | n | 17.0 ± 2.5 a | n | n | n | n | 8.7 ± 0.5 a | n | |
E70% | 14.8 ± 1.3 a | 20.8 ± 0.9 b | n | 9.3 ± 1.2 a | 8.8 ± 0.5 a | 7.8 ± 0.5 a | 10.0 ± 1.4 a | n | |
A30% | n | n | n | n | n | n | n | n | |
A50% | 19.0 ± 2.5 b | 17.5 ± 2.6 a | n | 8.3 ± 0.5 a | n | n | 7.5 ± 0.5 a | n | |
A70% | 15.3 ± 2.1 a | 21.8 ± 2.4 b | n | 8.3 ± 0.5 a | 9.8 ± 0.9 a | 8.0 ± 0 a | 9.5 ± 1.3 a | n | |
T. vulgare leaf | E30% | n | 12.8 ± 1.7 c | 8.8 ± 0.5 a | n | n | n | n | n |
E50% | n | 13.8 ± 1.5 c | 9.8 ± 2.2 a | 9.5 ± 1.0 a | n | n | n | 8.5 ± 1.0 a | |
E70% | 17.5 ± 2.1 b | 24.3 ± 2.9 d | 9.8 ± 0.5 a | 9.3 ± 1.3 a | n | n | n | 10.5 ± 1.9 a | |
A30% | 11.3 ± 3.8 b | 17.8 ± 1.7 a | 9.0 ± 1.4 a | 8.8 ± 0.9 a | n | n | n | 8.3 ± 0.5 a | |
A50% | 15.0 ± 0.8 a | 20.5 ± 0.9 b | 8.5 ± 0.6 a | 8.3 ± 0.5 a | n | n | n | 8.5 ± 1.0 a | |
A70% | 18.3 ± 1.3 b | 24.3 ± 2.9 d | 8.0 ± 0.0 a | 8.3 ± 0.5 a | 9.3 ± 1.5 a | n | n | 8.8 ± 1.0 a |
Bacteria Sample | T. vulgare Flower Extract, mg/mL | T. vulgare Leaf Extract, mg/mL | |||
---|---|---|---|---|---|
MIC | MBC | MIC | MBC | ||
E coli | ATCC 25922 | 53.9 | 53.9 | - | - |
V252 | 53.9 | 107.8 | - | - | |
V4 | 53.9 | 107.8 | - | - | |
S. aureus | ATCC 25923 | 3.4 | 6.8 | 7.8 | 15.7 |
V256 | 3.4 | 3.4 | 15.7 | 125.9 | |
S. agalactiae | V171 | 53.9 | 53.9 | 31.4 | 62.9 |
S. uberis | V243 | - | - | 62.9 | 125.9 |
Serratia liquefaciens | V251 | - | - | 125.9 | 125.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šukele, R.; Bārzdiņa, A.; Koka, R.; Skadins, I.; Lauberte, L.; Brangule, A.; Kovalcuka, L.; Bandere, D. Antibacterial Activity of Tanacetum vulgare L. Extracts against Clinical Isolates of Bovine Mastitis. Appl. Sci. 2023, 13, 3369. https://doi.org/10.3390/app13053369
Šukele R, Bārzdiņa A, Koka R, Skadins I, Lauberte L, Brangule A, Kovalcuka L, Bandere D. Antibacterial Activity of Tanacetum vulgare L. Extracts against Clinical Isolates of Bovine Mastitis. Applied Sciences. 2023; 13(5):3369. https://doi.org/10.3390/app13053369
Chicago/Turabian StyleŠukele, Renāte, Ance Bārzdiņa, Rudīte Koka, Ingus Skadins, Līga Lauberte, Agnese Brangule, Liga Kovalcuka, and Dace Bandere. 2023. "Antibacterial Activity of Tanacetum vulgare L. Extracts against Clinical Isolates of Bovine Mastitis" Applied Sciences 13, no. 5: 3369. https://doi.org/10.3390/app13053369
APA StyleŠukele, R., Bārzdiņa, A., Koka, R., Skadins, I., Lauberte, L., Brangule, A., Kovalcuka, L., & Bandere, D. (2023). Antibacterial Activity of Tanacetum vulgare L. Extracts against Clinical Isolates of Bovine Mastitis. Applied Sciences, 13(5), 3369. https://doi.org/10.3390/app13053369