Effect of Protective Coatings on Wooden Elements Exposed to a Small Ignition Initiator
Abstract
:1. Introduction
Protective Coatings
2. Materials and Methods
2.1. Experimental Samples
2.2. Preparation of Samples for Monitoring Initiation by a Small Ignition Initiator
- During the period from 8 October 2021 to 29 October 2021, the mass samples were air-conditioned and then dried (Drying room, Airtechno, Nová Dubnica nad Váhom, Slovakia). The mass was determined using digital scales with an accuracy of 0.01 g (Mettler Toledo, Columbus, OH, USA).
- After the mass was stabilized, the first layer of fungicidal coating was applied. The drying time of the coating was determined by its manufacturer.
- The second layer of fungicide coating was applied after 10 days. After this application, a 2-week period was specified for the coating to mature and the mass to settle. There was a decrease in mass due to the evaporation of water.
- After the above period, two coats of flame retardant were applied. Based on the manufacturer’s recommendation, the samples needed to be dried for 3 weeks.
2.3. Determination of the Ignitability of Wood Samples by the Action of a Small Ignition Initiator
- Evaluation of the effectiveness of the fire-retardant coating on the selected wood samples. A significant dependence of the mass loss during the experiment and flame spread within 30 s on the wood species were determined using the QtiPlot software program (QtiPlot 0.8.5 in the GNU/Linux OS environment of the UBUNTU 6.06 distribution, Bucuresti, Romania) [67].
- Evaluation of the influence of the fungicidal coating on the retarder effectiveness and search for the optimal fungicidal coating as an undercoat for the selected retardant, again, based on the mass loss during the experiment and flame spread within 30 s.
3. Results and Discussion
3.1. Monitoring the Effectiveness of the HRP Retardant on Wood Samples
3.2. Monitoring the Effect of Selected Fungicidal Coatings on the Effectiveness of HRP
4. Conclusions
- Significant dependence of flame spread within 30 s on particular tree species can be confirmed.
- The oak samples indicated the most satisfactory results regarding the effect of flame retardant and the effect of the combination of fungicide coating and flame retardant.
- The evaluated retardants demonstrated different effects on the final values of mass loss and flame spread. The most satisfactory values, regardless of the underlying wood, were for the BOCH FUN sample. This sample had a chemical composition that combined several active ingredients Alkyl (C12–16) dimethylbenzyl ammonium chloride, N-(3aminopropyl)-N-dodecylpropane-1,3-diamine plus boric acid, a component of some flame retardants.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barbu, M.C.; Tudor, E.M. State of the art of the Chinese forestry, wood industry and its markets. Wood Mater. Sci. Eng. 2021, 16, 1030–1039. [Google Scholar] [CrossRef]
- Netopilová, M.; Mikulenka, J.; Benešová, A. The development of composite building product and its fire technical characteristics. Adv. Mater. Res. 2014, 1001, 368–372. [Google Scholar] [CrossRef]
- Wu, X.F. Fire resistance of timber as a building material. Adv. Mater. Res. 2014, 1079–1080, 415–418. [Google Scholar] [CrossRef]
- Leško, R.; Lopušniak, M. Determination of fire resistance of ceiling structure variant design on the basis of timber using numerical calculation methods. Appl. Mech. Mater. 2016, 820, 379–384. [Google Scholar] [CrossRef]
- Tatić, U.; Šubic, B.; Ugovšek, A.; Starman, N.; Gantar, U.; Lopatič, J. Development and testing of the reinforced wooden windows. Procedia Struct. Integr. 2018, 13, 496–502. [Google Scholar] [CrossRef]
- Zhou, X.; Carmeliet, J.; Derome, D. Assessment of moisture risk of wooden beam embedded in internally insulated masonry walls with 2D and 3D models. Build. Environ. 2021, 193, 107460. [Google Scholar] [CrossRef]
- Ovsyannikov, S.I.; Dyachenko, V.Y. Fire resistance evaluation of pressed straw building envelopes. Mater. Sci. Forum 2019, 974, 237–242. [Google Scholar] [CrossRef]
- Östman, B. Chapter 3—Flammability of wood products. In Flammability Testing of Materials Used in Construction, Transport and Mining, 2nd ed.; Vivek Apte: New Delhi, India, 2021; pp. 61–87. [Google Scholar]
- Tureková, I.; Turnova, Z.; Balog, K.; Pastier, M. Study of thermal degradation of polymers. Adv. Mater. Res. 2013, 652–654, 1664–1667. [Google Scholar] [CrossRef]
- Kučera, P.; Lokaj, A.; Vlček, V. Behavior of the spruce and birch wood from the fire safety point of view. Adv. Mater. Res. 2013, 842, 725–728. [Google Scholar] [CrossRef]
- Rusinová, M.; Šlanhof, J. Fire safety of apartment buildings fabricated from glued sandwich panels compared with the more frequently used structural systems. Appl. Mech. Mater. 2016, 861, 104–111. [Google Scholar] [CrossRef]
- Rusinová, M.; Kalousek, M.; Šlanhof, J. Assessment of the dynamic temperature profile in fire loaded sandwich structures based on wood in comparison with conventional structural systems. Appl. Mech. Mater. 2019, 887, 98–105. [Google Scholar] [CrossRef]
- Troitzsch, J.; Antonatus, E. Chapter 3. Flame retardants and flame-retarded plastics. In Plastics Flammability Handbook, 4th ed.; Carl Handes Verlag: München, Germany, 2021; pp. 53–128. [Google Scholar]
- Miklósiová, T. Damage of the wood by biological factors, fire and methods of its protection. Adv. Mater. Res. 2013, 855, 19–21. [Google Scholar] [CrossRef]
- Ružinská, E.; Mitterová, I.; Zachar, M. The study of selected fire-technical characteristics of special wood products surface treatment by environmentally problematic coatings. Adv. Mater. Res. 2014, 1001, 373–378. [Google Scholar] [CrossRef]
- Orémusová, E.; Tutaj, M.; Dritomská, K. Effect of Fire Retardant Treatment on Flammability of Scots Pine Wood (Pinus sylvestris L.). In Heat–Fire–Materials 2019; Technical University in Zvolen: Zvolen, Slovakia, 2019; pp. 48–51. [Google Scholar]
- Li, X.J.; Cai, Z.Y.; Mou, Q.Y.; Wu, Y.Q.; Liu, Y. Effects of heat treatment on some physical properties of douglas fir (Pseudotsuga Menziesii) wood. Adv. Mater. Res. 2011, 197–198, 90–95. [Google Scholar] [CrossRef]
- Li, Y.; Lattimer, B.Y.; Case, S.W. Measurement and modelling of thermal and physical properties of wood construction materials. Constr. Build. Mater. 2021, 284, 122780. [Google Scholar] [CrossRef]
- Čunderlík, I. Science of Wood, 1st ed.; Technical University in Zvolen: Zvolen, Slovakia, 2009; p. 135. (In Slovak) [Google Scholar]
- Rosu, L.; Mustata, F.; Varganici, C.D.; Rosu, D.; Rusu, T.; Rosca, I. Thermal behaviour and fungi resistance of composites based on wood and natural and synthetic epoxy resins cured with maleopimaric acid. Polym. Degrad. Stab. 2019, 160, 148–161. [Google Scholar] [CrossRef]
- Vavrčík, H. Anatomical Structure of Wood. Mendel University in Brno, Faculty of Forestry and Wood Technology. Available online: http://ldf.mendelu.cz/und/sites/default/files/multimedia/stavba_dreva/index.htm (accessed on 12 February 2021). (In Czech).
- Materials Science. Macroscopic Structure of Wood. 2020. [Online]. Available online: http://evawolna.sweb.cz/prvak-mat3.php (accessed on 12 February 2020). (In Czech).
- Teacă, C.A.; Tanasă, F. Wood Surface Modification—Classic and ModernApproaches in Wood Chemical Treatment byEsterification Reactions. Coatings 2020, 10, 629. [Google Scholar] [CrossRef]
- Yang, R.; Cao, Q.; Liang, Y.; Hong, S.; Xia, C.; Wu, Y.; Li, J.; Cai, L.; Sonnec, C.; Van Le, Q.; et al. High capacity oil absorbent wood prepared through eco-friendly deep eutectic solvent delignification. Chem. Eng. J. 2020, 401, 126150. [Google Scholar] [CrossRef]
- Jellison, J.; Connolly, J.; Goodell, B.; Doyle, B.; Illman, B.; Fekete, F.; Ostrofsky, A. The role of cations in the biodegradation of wood by the brown rot fungi. Int. Biodeterior. Biodegrad. 1997, 39, 165–179. [Google Scholar] [CrossRef]
- Fransson, A.M.; Valeur, I.; Wallander, H. The wood-decaying fungus Hygrophoropsis aurantiaca increases P availability in acidforest humus soil, while N addition hampers this effect. Soil Biol. Biochem. 2004, 36, 1699–1705. [Google Scholar] [CrossRef]
- Tanasă, F.; Teacă, C.A.; Zănoagă, M. Chapter 6 Protective coatings for wood. In Handbook of Modern Coating Technologies; Elsevier: New York, NY, USA, 2021; pp. 175–267. [Google Scholar]
- Makovická Osvaldová, L.; Osvald, A. Flame retardation of wood. Adv. Mater. Res. 2013, 690–693, 1331–1334. [Google Scholar] [CrossRef]
- Kadlicová, P.; Gašpercová, S.; Makovická Osvaldová, L. Monitoring of weight loss of fibreboard during influence of flame. Procedia Eng. 2017, 192, 393–398. [Google Scholar] [CrossRef]
- Gašparík, M.; Makovická Osvaldová, L.; Čekovská, H.; Potůček, D. Flammability characteristics of thermally modified oak wood treated with a fire retardant. Bioresources 2017, 12, 8451–8467. [Google Scholar]
- Kozlowski, R.; Muzyczek, M. Chapter 11 Smart environmentally friendly composite coatings for wood protection. In Woodhead Publishing Series in Composites Science and Engineering, Smart Composite Coatings and Membranes; Woodhead Publishing: Sawston, UK, 2016; pp. 293–325. [Google Scholar]
- Fire Test and Effects of Fire Retardant on the Natural Ability of Timber: A Review. Available online: https://www.researchgate.net/publication/332754332_Fire_Test_and_Effects_of_Fire_Retardant_on_the_Natural_Ability_of_Timber_A_Review (accessed on 24 March 2021).
- Wypych, G. Chapter 6 Selection of flame retardants for different polymers. In Handbook of Flame Retardants; ChemTec Publishing: Toronto, ON, Canada, 2021; pp. 89–226. [Google Scholar]
- Wang, K.; Dong, Y.; Ling, Z.; Liu, X.; Shi, S.Q.; Li, G. Transparent wood developed by introducing epoxy vitrimers into a delignified wood template. Compos. Sci. Technol. 2021, 207, 108690. [Google Scholar] [CrossRef]
- Tribulová, T.; Kačík, F.; Evtuguin, D.V.; Čabalová, I. Influence of chemical treatment on chemical changes of fir wood. Key Eng. Mater. 2016, 688, 38–43. [Google Scholar] [CrossRef]
- Mao, N.; Jiang, L.; Li, X.; Gao, Y.; Zang, Z.; Peng, S.; Ji, L.; Lv, C.; Guo, J.; Wang, H.; et al. Core-shell ammonium polyphosphate@nanoscopicaluminum hydroxide microcapsules: Preparation, characterization, and its flame retardancy performance on wood pulp paper. Chem. Eng. J. Adv. 2021, 6, 100096. [Google Scholar] [CrossRef]
- Gaff, M.; Kačík, F.; Gašparík, M.; Todaro, L.; Jones, D.; Corleto, R.; Makovická Osvaldová, L.; Čekovská, H. The effect of synthetic and naturalfire-retardants on burning and chemical characteristics of thermally modified teak (Tectonagrandis L. f.) wood. Constr. Build. Mater. 2019, 200, 551–558. [Google Scholar] [CrossRef]
- Brahmia, F.; Zsolt, K.; Horváth, P.; Alpár, T. Comparative study on fire retardancy of various wood species treated with PEG 400, phosphorus, and boron compounds for use in cement-bonded wood-based products. Surf. Interfaces 2020, 21, 100736. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, J.; Shen, H.; Xu, J.; Cao, J. Montmorillonite-catalyzed furfurylated wood for flame retardancy. Fire Saf. J. 2021, 121, 103297. [Google Scholar] [CrossRef]
- Ma, T.; Li, L.; Liu, Z.; Zhang, J.; Guo, C.; Wang, Q. A facile strategy to construct vegetable oil-based, fire-retardant, transparent and musel adhesive intumescent coating for wood substrates. Ind. Crops Prod. 2020, 154, 112628. [Google Scholar] [CrossRef]
- Lee, S.H.; Ashaari, Z.; Lum, W.C.; Abdul Halip, J.; Ang, A.F.; Tan, P.L.; Ling Chin, K.; MdTahir, P. Thermal treatment of wood using vegetable oils: A review. Constr. Build. Mater. 2018, 181, 408–419. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, P.; Chen, Z.; Li, L.; Huang, Y. Flame retardancy, thermal stability, and hygroscopicity of wood materials modified with melamine and amino trimethylene phosphonic acid. Constr. Build. Mater. 2021, 267, 121042. [Google Scholar] [CrossRef]
- Kivader, M.; Klement, I. Determination of moisture content in spruce wood during high temperature drying process. Acta Fac. Xylologiae 2012, 51, 25–32. [Google Scholar]
- STN EN 13183-1: 2002; Moisture Content of a Piece of Timber—Part 1: Determination by Oven Dry Method. Slovak Standards Institute: Bratislava, Slovakia, 2002. (In Slovak)
- CEN Standard EN 323:1993; Wood-Based Panels—Determination of Density. European Committe for Standartion: Brussels, Belgium, 1993.
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shaha, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Gejdoš, P. Analysis of performance improvement of wood processing companies in slovakia and the czech republic through the implementation of quality management systems. Acta Fac. Xylologiae 2016, 58, 113–124. [Google Scholar]
- Fungonit. Data Sheet. Available online: http://uloziste.primalex.cz/gallery/kbu-fungonit.pdf (accessed on 20 April 2021).
- Bochemit Opti F+. Data Sheet. Available online: https://www.bochemitshop.cz/index.php?controller=attachment&id_attachment=368&inline=1 (accessed on 20 April 2021).
- Bochemit QB Hobby. Data Sheet. Available online: https://www.hornbach.sk/data/shop/D04/001/780/491/353/789/5035577_Doc_01_SK_20180417221658.pdf (accessed on 21 April 2021).
- Fungistop. Data Sheet. Available online: https://www.colorlak.sk/wp-content/import/www/data/bl_/s1031_/sk_S1031.pdf (accessed on 21 April 2021).
- Aqualux. Data Sheet. Available online: https://www.painthouse.sk/Produkty/Chromos-Svjetlost/AQUALUX-program/AQUALUX-lazur-base/ (accessed on 22 April 2021).
- HR Prof. Data Sheet. Available online: https://colorcompany.sk/public/manager/source/DOKUMENTY/kbu-hr-prof.pdf (accessed on 22 April 2021).
- Cox, C. Insecticide facts sheet. Cypermethrin. Mag. Pestic. Refom. 1996, 2, 1–8. (In Slovak) [Google Scholar]
- Sanders, F.T. Reregistration Eligibility Decision for Alkyl Dimethyl Benzyl Ammonium Chloride (ADBAC); U.S. Environmental Protection Agency Office of Prevention, Pesticides, and Toxic Substances: Washington, DC, USA, 2006; p. 114. [Google Scholar]
- ECHA. Zhrnutie Charakteristík Skupiny Biocídnych Výrobkov. Available online: https://echa.europa.eu/documents/10162/0c11a844-7622-0aeb-e812-9cc6b716a6fa (accessed on 2 March 2021).
- What Are the Effects of Propiconazole? Available online: http://sk.bestplanthormones.com/info/what-are-the-effects-of-propiconazole-which-d-42672224.html (accessed on 10 January 2021).
- Hartwig, T.; Corvalan, C.; Best, N.B.; Budka, J.S.; Zhu, J.Y.; Choe, S.; Schulz, B. Propiconazole is a specific and accessible brassinosteroid (BR) biosynthesis inhibitor for arabidopsis and maize. PLoS ONE 2012, 7, e36625. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Bryson, P.K.; Schnabel, G. Influence of storage approaches on instability of propiconazole resistance in Monilinia fructicola. Pest Manag. Sci. 2011, 68, 1003–1009. [Google Scholar] [CrossRef]
- Carvalho, W.S.; Martins, D.F.; Gomes, F.R.; Leite, I.R.; da Silva, G.L.; Ruggiero, R.; Richter, E.M. Phosphate adsorption on chemically modified sugarcane bagasse fibres. Biomass Bioenergy 2011, 35, 3913–3919. [Google Scholar] [CrossRef]
- Pacaiova, H.; Nagyova, A.; Oravec, M. Risk-based thinking methodology and its influence on occupational health and safety proces. In Advances in Physical Ergonomics and Human Factors; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 267–276. [Google Scholar]
- Östman, B.A.L.; Mikkola, E. European Classes for the Reaction to Fire Performance of Wood Products; Instituet for Träteknisk Forskning: Stockholm, Sweden, 2004; p. 36. [Google Scholar]
- CEN Standard EN 13501-1: 2019; Fire Classification of Construction Products and Building Elements. Part 1: Classification Using Data from Reaction to Firetests. European Committe for Standartion: Brussels, Belgium, 2019.
- Mitrenga, P.; Vandlíčková, M.; Dušková, M. Evaluation of the new fire retardants on wood by proposed testing method. In Proceedings of the International Conference on Engineering Science and Production Management (ESPM), High Tatras, Slovakia, 16–17 April 2015. [Google Scholar]
- Coneva, I. Selected cellulosic materials and their flammability from view of normalized method by oxygen index. In Fire Protection, Safety and Security, Proceedings of the International Scientific Conference, Zvolen, Slovakia, 3–5 May 2017; Technical University: Zvolen, Slovakia, 2017. (In Slovak) [Google Scholar]
- STN EN ISO 11925-2: 2021; Reaction to Firetests—Ignitability of Building Products Subjected to Direct Impingement of Flame—Part 2: Single-Flame Source Test. International Organization for Standardization: Geneva, Switzerland, 2021.
- QtiPlot—Data Analysis and Scientific Visualisation. Available online: http://soft.proindependent.com/qtiplot.html (accessed on 10 September 2021).
- Osvald, A.; Fanfarová, A.; Šmíra, P.; Dušková-Smrčková, M. Evaluation of wood burning retardants by additional methods. In Proceedings of the 18th International Conference Crisis Situations Solution in Specific Environment, 5–6 June 2013; Faculty of Special Engineering, Technical Univerzity in Žilina: Žilina, Slovakia, 2013; pp. 451–456. (In Slovak). [Google Scholar]
- Holz Prof. Fire Retardant HR Prof. (HRPa). Available online: https://holzprof.com/holz-prof-eng/ (accessed on 22 March 2021).
- Danihelová, A.; Sčensný, P.; Gergeľ, T. Proposal of suitable treatment of technical textiles with flame retardants. In Heat–Fire–Materials 2019; Technical University in Zvolen: Zvolen, Slovakia, 2019. [Google Scholar]
- Phromsaen, A.; Chindaprasirt, P.; Hiziroglu, S.; Kasemsiri, P. Thermal degradation and fire retardancy of wood impregnated with nitrogen phosphorus flame retardant. Adv. Mater. Res. 2014, 931–932, 152–156. [Google Scholar] [CrossRef]
- Determining Wood Species (Part 2). Available online: https://urobsisam.zoznam.sk/dom/stavebny-material/urcovanie-druhov-dreva-2-cast (accessed on 30 March 2021). (In Slovak).
- Chai, Y.B.; Liu, J.L.; Zhen, X. Dimensional stability, mechanical properties and fire resistance of MUF-boron treated wood. Adv. Mater. Res. 2011, 341–342, 80–84. [Google Scholar] [CrossRef]
- Chai, Y.B.; Liu, J.L.; Xing, Z. Analysis on the combustion performance of the MMFU-boric acid/borax treated poplar wood. Appl. Mech. Mater. 2012, 174–177, 375–379. [Google Scholar] [CrossRef]
- Li, C.C.; Qin, Z.Y.; Zhang, Q.; Li, J.Z. Surface free energy of boron-compounds modified poplar veneer. Adv. Mater. Res. 2013, 753–755, 843–847. [Google Scholar] [CrossRef]
- Ullah, S.; Ahmad, F.; Singh, A. Development and testing of intumescent fire retardant coating on various structural geometries. Appl. Mech. Mater. 2014, 699, 360–365. [Google Scholar] [CrossRef]
- Trenčiansky, M.; Lieskovsky, M.; Oravec, M. Economical Biomass Evalution. Monography; Technical University in Zvolen: Zvolen, Slovak Republic, 2007; p. 147. (In Slovak) [Google Scholar]
- Vidholdova, Z.; Slabejova, G.; Smidriakova, M. Quality of oil- and wax-based surface finishes on thermally modified oak wood. Coatings 2021, 11, 143. [Google Scholar] [CrossRef]
- Gašpercová, S.; Kozáková, P. Impact of Fungicide Compositions for Flame Burning of Wood. Crisis Manag. 2018, 2, 24–27. (In Slovak) [Google Scholar] [CrossRef]
- Osvald, A.; Makovická Osvaldová, L.; Mitrenga, P.; Dušková Smrčková, M.; Chmelíková, D.; Hudáková, M.; Šmíra, P.; Nasswettrová, A. Mew Fire Retardants for Wood. In Proceedings of the 20th International Conference Crisis Situations Solution in Specific Environment, 20–21 May 2015; Faculty of Special Engineering, Technical Univerzity in Žilina: Žilina, Slovakia, 2015; pp. 477–480. (In Slovak). [Google Scholar]
- Mitrenga, P.; Osvald, A.; Dušková, M. The influence of Sample Preparation on the Quality of the Output in the Evaluation of the Effectiveness of Wood Flame Retardants. In Proceedings of the 19th International Conference Crisis Situations Solution in Specific Environment, 21–22 May 2014; Faculty of Security Engineering, Technical Univerzity in Žilina: Žilina, Slovakia, 2014; pp. 505–510. (In Slovak). [Google Scholar]
- Chaouch, M.; Pétrissans, A.; Gérardin, F. Use of wood elemental composition to predict heat treatment intensity and decay resistance of different softwood and hardwood species. Polym. Degrad. Stab. 2010, 95, 2255–2259. [Google Scholar] [CrossRef]
- Harangozó, J.; Balog, K.; Szabova, Z.; Kuracina, R. Assessment of wood materials modified by flame retardants at loading by heatflux. Adv. Mater. Res. 2014, 1001, 272–275. [Google Scholar] [CrossRef]
Wood | Technical Name | Moisture (%) | Density (kg·m−3) | Designation | |
---|---|---|---|---|---|
Soft | Norway spruce | (Picea abies) | 17 | 380 | SM |
Red spruce | (Larix decidua) | 15.7 | 330 | SMR | |
Scots pine | (Pinus sylvestris) | 16 | 430 | BOR | |
Hard | Common ash | (Fraxinus excelsior L.) | 15.8 | 570 | JAS |
Common beech | (Fagus sylvatica) | 18.8 | 570 | BUK | |
English oak | (Quercus robur) | 18 | 650 | DUB |
Chemical | Type | Appearance | Density (g·cm−3) | Component | Amount (%) |
---|---|---|---|---|---|
FUN [48] | fungicide | Colourless transparent liquid | 1.0 | N-(3-aminopropyl)-N-dodecylpropane-1,3-diamine(molecular formula C18H41N3) | <3 |
lactic acid | <3 | ||||
2,2′-oxydiethanol, amines, coco alkyldimethyl, N-oxides | <2 | ||||
propiconazole | <2 | ||||
cypermethrin | <0.25 | ||||
BOCH FUN [49] | fungicide | Brown odourless liquid | 0.99–1.0 | alkyl (C12–16) dimethylbenzyl ammonium chloride | <20 |
2-(2-butoxyethoxy)ethanol | <2 | ||||
phosphoric acid | <0.5 | ||||
propiconazole, tebuconazole | <0.3 | ||||
N-(3aminopropyl)-N-dodecylpropane-1,3-diamine | <0.25 | ||||
Cypermethrin | <0.1 | ||||
BOCH [50] | fungicide | Colourless transparent liquid | 1.015–1.030 | alkyl/benzyl (C12–16) dimethylbenzyl ammonium chloride | <5.3 |
boric acid | <5.3 | ||||
2-aminoethanol | <2 | ||||
NAP [51] | fungicide | Colourless transparent liquid of light yellow | 0.9–1.10 | hydrocarbons of C10-C13 n-alkanes, cycloalkanes, isoalkanes, aromatics | <2 |
2-(2-butoxyetoxy)ethanol | |||||
tebuconazole (ISO) | |||||
cyclohexanone oxime | |||||
cypermethrin | |||||
AQUA [52] | fungicide | Whitish liquid | 1.01–1.02 | D-glucose, oligomers, decyclooctyl glycosides, mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one | |
propiconazole (ISO) | <1 | ||||
3-iodoprop-2-inylbutylcarbamate | <1 | ||||
cypermethrin | <0.1 | ||||
HRP [53] | flame retardant | Light brown odourless liquid | 1.10+/−0.01 | ferric phosphate/Iron orthophosphate | < 30% |
citric acid | <1% | ||||
octadecan-1-ol, ethoxylated | <0.5 | ||||
reaction to fire | B-s1, d0 |
Sample | N | Mean | Standard Deviation | Variance | Standard Error |
---|---|---|---|---|---|
Table 1_2 | 30 | 0.07566666667 | 0.02269487764 | 0.000515057471 | 0.004143498808 |
Table 1_3 | 30 | 6.61 | 1.12505938541 | 1.26575862069 | 0.205406801307 |
Source | DF | Sum of Squares | Mean Square | F Value | p Value |
Model | 1 | 640.462681667 | 640.4622681667 | 1011.570709733 | 2.100791912 × 103 |
Error | 58 | 36.72193667 | 0.633136839081 | ||
Total | 59 | 677.184618333 |
Name | Untreated (%) | FUN (%) | BOCH FUN (%) | BOCH (%) | NAP (%) | AQUA (%) |
---|---|---|---|---|---|---|
SM | 0.06 ± 0.0132 | 0.048 ± 0.0132 | 0.038 ± 0.0263 | 0.058 ± 0.0172 | 0.042 ± 0.0116 | 0.066 ± 0.0089 |
SMR | 0.05 ± 0.004 | 0.04 ± 0.0109 | 0.052 ± 0.0248 | 0.05 ± 0.0063 | 0.051 ± 0.0116 | 0.058 ± 0.0074 |
BOR | 0.097 ± 0.029 | 0.048 ± 0.004 | 0.048 ± 0.004 | 0.059 ± 0.023 | 0.082 ± 0.016 | 0.064 ± 0.010 |
JAS | 0.096 ± 0.008 | 0.085 ± 0.012 | 0.088 ± 0.018 | 0.078 ± 0.007 | 0.092 ± 0.016 | 0.088 ± 0.009 |
BUK | 0.084 ± 0.008 | 0.062 ± 0.014 | 0.056 ± 0.018 | 0.068 ± 0.011 | 0.082 ± 0.007 | 0.072 ± 0.008 |
DUB | 0.066 ± 0.010 | 0.046 ± 0.004 | 0.054 ± 0.008 | 0.056 ± 0.014 | 0.07 ± 0.022 | 0.058 ± 0.021 |
Name | Untreated (cm) | FUN (cm) | BOCH FUN (cm) | BOCH (cm) | NAP (cm) | AQUA (cm) |
---|---|---|---|---|---|---|
SM | 8.82 ± 0.285 | 7.86 ± 0.458 | 7.52 ± 0.664 | 7.22 ± 0.381 | 7.52 ± 0.664 | 9.42 ± 0.371 |
SMR | 6.44 ± 0.523 | 7.74 ± 1.028 | 6.26 ± 0.488 | 5.84 ± 0.326 | 6.24 ± 0.431 | 7.56 ± 1.228 |
BOR | 6.5 ± 0.357 | 6.42 ± 0.795 | 6.34 ± 0.649 | 5.98 ± 0.146 | 7.7 ± 0.200 | 6.58 ± 0.305 |
JAS | 6.24 ± 0.2224 | 6.42 ± 0.389 | 4.82 ± 0.213 | 4.34 ± 0.12 | 5.84 ± 0.531 | 6.28 ± 0.231 |
BUK | 6.12 ± 0.441 | 5.5 ± 0.340 | 5.0 ± 0.275 | 4.52 ± 0.411 | 5.48 ± 0.470 | 6.3 ± 0.340 |
DUB | 5.54 ± 0.313 | 4.24 ± 0.402 | 4.44 ± 0.496 | 4.08 ± 0.386 | 4.98 ± 0.354 | 5.6 ± 0.485 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gašpercová, S.; Marková, I.; Vandlíčková, M.; Osvaldová, L.M.; Svetlík, J. Effect of Protective Coatings on Wooden Elements Exposed to a Small Ignition Initiator. Appl. Sci. 2023, 13, 3371. https://doi.org/10.3390/app13053371
Gašpercová S, Marková I, Vandlíčková M, Osvaldová LM, Svetlík J. Effect of Protective Coatings on Wooden Elements Exposed to a Small Ignition Initiator. Applied Sciences. 2023; 13(5):3371. https://doi.org/10.3390/app13053371
Chicago/Turabian StyleGašpercová, Stanislava, Iveta Marková, Miroslava Vandlíčková, Linda Makovická Osvaldová, and Jozef Svetlík. 2023. "Effect of Protective Coatings on Wooden Elements Exposed to a Small Ignition Initiator" Applied Sciences 13, no. 5: 3371. https://doi.org/10.3390/app13053371
APA StyleGašpercová, S., Marková, I., Vandlíčková, M., Osvaldová, L. M., & Svetlík, J. (2023). Effect of Protective Coatings on Wooden Elements Exposed to a Small Ignition Initiator. Applied Sciences, 13(5), 3371. https://doi.org/10.3390/app13053371