Combinations of Echinacea (Echinacea purpurea) and Rue (Ruta gravolens) Plant Extracts with Lytic Phages: A Study on Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Hosts and Bacteriophages
2.2. Plant Extract Preparation
2.3. Plant Extract Studies on Bacterial Cells
2.4. Phage-Extract Coincubation Assay
2.5. Phage-Extract Synographies
2.6. Phage Infection and Lysis Profile Experiments
2.7. Scanning Electron Microscope (SEM) Visualization
2.8. Statistical Analysis
3. Results
3.1. Antibacterial Activity of Plant Extracts
3.2. Coincubation Assay
3.3. Phage–Extract Interaction Stoichiometries
3.4. Bacteriophage Lytic Performance
3.5. Microscopic Imaging
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghramh, H.A.; Ibrahim, E.H.; Kilnay, M.; Ahmad, Z.; Alhag, S.K.; Khan, K.A.; Taha, R.; Asiri, F.M. Silver nanoparticle production by Ruta graveolens and testing its safety, bioactivity, immune modulation, anticancer, and insecticidal potentials. Bioinorg. Chem. Appl. 2020, 24, 5626382. [Google Scholar] [CrossRef]
- Coelho, J.; Barros, L.; Dias, M.I.; Finimundy, T.C.; Amaral, J.S.; Alves, M.J.; Calhelha, R.C.; Santos, P.F.; Ferreira, I.C.F.R. Echinacea purpurea (L.) Moench: Chemical characterization and bioactivity of its extracts and fractions. Pharmaceuticals 2020, 13, 125. [Google Scholar] [CrossRef]
- Reddy, D.N.; Al-Rajab, A.J. Chemical composition, antibacterial and antifungal activities of Ruta graveolens L. volatile oils. Cogent Chem. 2016, 2, 1220055. [Google Scholar] [CrossRef]
- Bañuelos-Valenzuela, R.; Delgadillo-Ruiz, L.; Echavarría-Cháirez, F.; Delgadillo-Ruiz, O.; Meza-López, C. Chemical composition and FTIR of ethane extracts of Larrea tridentata, Origanum vulgare, Artemisa ludoviciana and Ruta graveolens. Agrociencia 2018, 52, 309–321. [Google Scholar]
- Hill, L.L.; Foote, J.C.; Erickson, B.D.; Cerniglia, C.E.; Denny, G.S. Echinacea purpurea supplementation stimulates select groups of human gastrointestinal tract microbiota. J. Clin. Pharm. Ther. 2006, 31, 599–604. [Google Scholar] [CrossRef]
- Sharma, M.; Vohra, S.; Arnason, J.T.; Hudson, J.B. Echinacea extracts contain significant and selective activities against human pathogenic bacteria. Pharm. Biol. 2008, 46, 111–116. [Google Scholar] [CrossRef]
- Pimchan, T.; Cooper, C.; Eumkeb, G.; Nilsson, A. In vitro activity of a combination of bacteriophages and antimicrobial plant extracts. Lett. Appl. Microbiol. 2018, 66, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Abedon, S.T.; García, P.; Mullany, P.; Aminov, R. Editorial: Phage therapy: Past, present and future. Front. Microbiol. 2017, 8, 981. [Google Scholar] [CrossRef] [Green Version]
- You, J.; Zhang, Y.; Hu, Z. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids Surf. B Biointerfaces 2011, 85, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Stachurska, X.; Cendrowski, K.; Pachnowska, K.; Piegat, A.; Mijowska, E.; Nawrotek, P. Nanoparticles influence lytic phage T4-like performance in vitro. Int. J. Mol. Sci. 2022, 23, 7179. [Google Scholar] [CrossRef] [PubMed]
- Delitheos, A.; Tiligada, E.; Yannitsaros, A.; Bazos, I. Antiphage activity in extracts of plants growing in Greece. Phytomedicine 1997, 4, 117–124. [Google Scholar] [CrossRef]
- Ribeiro, J.M.; Pereira, G.N.; Kobayashi, R.K.; Nakazato, G. Antiphage activity of natural and synthetic substances: A new age for antivirals? Future Microbiol. 2020, 15, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Fedorenko, A.; Grinberg, M.; Orevi, T.; Kashtan, N. Survival of the enveloped bacteriophage Phi6 (a surrogate for SARS-CoV-2) in evaporated saliva microdroplets deposited on glass surfaces. Sci. Rep. 2020, 10, 22419. [Google Scholar] [CrossRef]
- Whitworth, C.; Mu, Y.; Houston, H.; Martinez-Smith, M.; Noble-Wang, J.; Coulliette-Salmond, A.; Rose, L. Persistence of bacteriophage Phi6 on porous and nonporous surfaces and the potential for its use as an Ebola virus or coronavirus surrogate. Appl. Environ. Microbiol. 2020, 86, e01482-20. [Google Scholar] [CrossRef] [PubMed]
- Stachurska, X.; Roszak, M.; Jabłońska, J.; Mizielińska, M.; Nawrotek, P. Double-layer agar (DLA) modifications for the first step of the phage-antibiotic synergy (PAS) identification. Antibiotics 2021, 10, 1306. [Google Scholar] [CrossRef]
- Kropinski, A.M.; Mazzocco, A.; Waddell, T.E.; Lingohr, E.; Johnson, R.P. Enumeration of bacteriophages by double agar overlayplaque assay. In Bacteriophages. Methods in Molecular Biology; Clokie, M.R., Kropinski, A.M., Eds.; Humana Press: Totowa, NJ, USA, 2009; Volume 501, pp. 69–76. [Google Scholar]
- Salachna, P.; Grzeszczuk, M.; Meller, E.; Mizielińska, M. Effects of gellan oligosaccharide and NaCl stress on growth, photosynthetic pigments, mineral composition, antioxidant capacity and antimicrobial activity in red perilla. Molecules 2019, 24, 3925. [Google Scholar] [CrossRef] [Green Version]
- Ordon, M.; Nawrotek, P.; Stachurska, X.; Schmidt, A.; Mizielińska, M. Mixtures of Scutellaria baicalensis and Glycyrrhiza L. extracts as antibacterial and antiviral agents in active coatings. Coatings 2021, 11, 1438. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Gu Liu, C.; Green, S.I.; Min, L.; Clark, J.R.; Salazar, K.C.; Terwilliger, A.L.; Kaplan, H.B.; Trautner, B.W.; Ramig, R.F.; Maresso, A.W. Phage-antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry. MBio 2020, 11, e01462-20. [Google Scholar] [CrossRef] [PubMed]
- Manayi, A.; Vazirian, M.; Saeidnia, S. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacogn. Rev. 2015, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Barnes, J.; Anderson, L.A.; Gibbons, S.; Phillipson, J.D. Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): A review of their chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol. 2005, 57, 929–954. [Google Scholar] [CrossRef] [Green Version]
- Jinous, A.; Roghaieh, K. Phytochemistry and pharmacological properties of Ruta graveolens L. J. Med. Plant Res. 2012, 6, 3942–3949. [Google Scholar] [CrossRef]
- Parray, S.A.; Bhat, J.U.; Ahmad, G.; Jahan, N.; Sofi, G.; Iqbal, S.M.F. Ruta graveolens: From traditional system of medicine to modern pharmacology: An overview. Am. J. Pharm. Tech. Res. 2012, 2, 239–252. [Google Scholar]
- Maass, N.; Bauer, J.; Paulicks, B.R.; Böhmer, B.M.; Roth-Maier, D.A. Efficiency of Echinacea purpurea on performance and immune status in pigs. J. Anim. Physiol. Anim. Nutr. 2005, 89, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Daryin, A.; Kershov, N.; Shishkina, T.; Guseva, T. Efficiency of using Echinacea purpurea in feeding laying hens of a parent flock. Sci. Pap. Ser. D Anim. Sci. 2020, 63, 112. [Google Scholar]
- Ayala Martínez, M.; Zepeda-Bastida, A.; Soto-Simental, S. Dietary supplementation effects with Ruta graveolens on performance, carcass traits and meat quality on rabbits. Rev. Mex. Cienc. Pecu. 2020, 11, 1220–1230. [Google Scholar] [CrossRef]
- Thanki, A.M.; Mignard, G.; Atterbury, R.J.; Barrow, P.; Millard, A.D.; Clokie, M.R. Prophylactic delivery of a bacteriophage cocktail in feed significantly reduces Salmonella colonization in pigs. Microbiol. Spectr. 2022, 10, e00422-22. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Mnayer, D.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Bezerra, C.F.; Coutinho, H.D.M.; Salehi, B.; Martorell, M.; del Mar Contreras, M.; Soltani-Nejad, A.; et al. Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phytother. Res. 2018, 32, 1653–1663. [Google Scholar] [CrossRef]
- Stanisavljević, I.; Stojičević, S.; Veličković, D.; Veljković, V.; Lazić, M. Antioxidant and antimicrobial activities of Echinacea (Echinacea purpurea L.) extracts obtained by classical and ultrasound extraction. Chin. J. Chem. Eng. 2009, 17, 478–483. [Google Scholar] [CrossRef]
- Aarland, R.C.; Bañuelos-Hernández, A.E.; Fragoso-Serrano, M.; Sierra-Palacios, E.D.C.; Díaz de León-Sánchez, F.; Pérez-Flores, L.J.; Rivera-Cabrera, F.; Mendoza-Espinoza, J.A. Studies on phytochemical, antioxidant, anti-inflammatory, hypoglycaemic and antiproliferative activities of Echinacea purpurea and Echinacea angustifolia extracts. Pharm. Biol. 2017, 55, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Vimalanathan, S.; Schoop, R.; Hudson, J. High-potency anti-influenza therapy by a combination of Echinacea purpurea fresh herb and root tinctures. J. App. Pharm. Sci. 2013, 3, 1–5. [Google Scholar]
- Hudson, J.B. Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in infectious diseases. J. Biomed. Biotechnol. 2012, 2012, 769896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pleschka, S.; Stein, M.; Schoop, R.; Hudson, J.B. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV). Virol. J. 2009, 6, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amabye, T.G. Phytochemical screening and evaluation of antibacterial activity of Ruta graveolens L.-a medicinal plant grown around Mekelle, Tigray, Ethiopia. Nat. Prod. Chem. Res. 2015, 3, 1000195. [Google Scholar] [CrossRef]
- Hashemi Karouei, S.M. Antifungal and antibacterial effects of Ruta graveolens extracts. Int. J. Mol. Clin. Microbiol. 2015, 5, 475–480. [Google Scholar]
- Azalework, H.G.; Sahabjada, A.J.; Arshad, T.M. Phytochemical investigation, GC-MS profile and antimicrobial activity of a medicinal plant Ruta graveolens L. from Ethiopia. Int. J. Pharm. Pharm. Sci. 2017, 9, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, A.; Mikhova, B.; Najdenski, H.; Tsvetkova, I.; Kostova, I. Antimicrobial and cytotoxic activity of Ruta graveolens. Fitoterapia 2005, 76, 344–347. [Google Scholar] [CrossRef]
- Moghadam, M.A.J.; Honarmand, H.; Falah-Delavar, S.; Saeidinia, A. Study on antibacterial effect of Ruta graveolens extracts on pathogenic bacteria. Ann. Biol. Res. 2012, 3, 4542–4545. [Google Scholar]
- Oliva, A.; Meepagala, K.M.; Wedge, D.E.; Harries, D.; Hale, A.L.; Aliotta, G.; Duke, S.O. Natural fungicides from Ruta graveolens L. leaves, including a new quinolone alkaloid. J. Agric. Food Chem. 2003, 51, 890–896. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Mousavi-Jazayeri, S.M.; Rezaee, M.B.; Parsania, M. Antiviral effects of Aloe vera (L.) Burm. f. and Ruta graveolens L. extract on acyclovir-resistant herpes simplex virus type 1. J. Med. Plants By-Prod. 2021, 10, 103–108. [Google Scholar] [CrossRef]
- Awasthi, L.P.; Menzel, G. Effect of root extract from Boerhaavia diffusa L., containing an antiviral principle upon plaque formation of RNA bacteriophages. Zentralbl. Mikrobiol. 1986, 141, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Kamimoto, M.; Nakai, Y.; Tsuji, T.; Shimamoto, T.; Shimamoto, T. Antiviral effects of persimmon extract on human norovirus and its surrogate, bacteriophage MS2. J. Food Sci. 2014, 79, M941–M946. [Google Scholar] [CrossRef] [PubMed]
- Cock, I.; Kalt, F.R. A modified MS2 bacteriophage plaque reduction assay for the rapid screening of antiviral plant extracts. Pharmacogn. Res. 2010, 2, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jassim, S.A.; Naji, M.A. In vitro evaluation of the antiviral activity of an extract of date palm (Phoenix dactylifera L.) pits on a Pseudomonas phage. eCAM 2010, 7, 57–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abolhassani, M. Antiviral activity of borage (Echium amoenum). Arch. Med. Sci. 2010, 6, 366–369. [Google Scholar] [CrossRef]
- Tayyarcan, E.K.; Acar Soykut, E.; Menteş Yılmaz, O.; Boyaci, I.H.; Khaaladi, M.; Fattouch, S. Investigation of different interactions between Staphylococcus aureus phages and pomegranate peel, grape seed, and black cumin extracts. J. Food Saf. 2019, 39, e12679. [Google Scholar] [CrossRef]
Bacteriophage | Family | Size | Genome | Features |
---|---|---|---|---|
Phi6 (Φ6) | Cystoviridae | ~80–100 nm | dsRNA | Enveloped (lipid membrane), medium size, no tail |
MS2 | Leviviridae | ~23–28 nm | ssRNA | Non-enveloped, small size and genome, no tail |
T4 | Myoviridae | ~120–200 nm/86–90 nm | dsDNA | Non-enveloped, relatively big, contractile tail |
Bacterial Host | Phage | Phage Titre | Extract | Extract (%) | Treatment Type |
---|---|---|---|---|---|
P. syringae DSM 21482 | Phi6 | 108 | EP | 25 | Phage + extract |
P. syringae DSM 21482 | - | - | EP | 25 | Extract |
P. syringae DSM 21482 | Phi6 | 108 | EP | 6.25 | P+E+B combination * |
P. syringae DSM 21482 | Phi6 | 108 | EP | 0.049 | P+E+B combination * |
P. syringae DSM 21482 | - | - | - | - | Growth control |
E. coli DSM 5695 | MS2 | 108 | EP | 25 | Phage + extract |
E. coli DSM 5695 | - | - | EP | 25 | Extract |
E. coli DSM 5695 | MS2 | 108 | EP | 6.25 | P+E+B combination * |
E. coli DSM 5695 | MS2 | 108 | EP | 0.049 | P+E+B combination * |
E. coli DSM 5695 | - | - | - | - | Growth control |
E. coli DSM 613 | T4 | 108 | EP | 25 | Phage + extract |
E. coli DSM 613 | - | - | EP | 25 | Extract |
E. coli DSM 613 | T4 | 108 | EP | 6.25 | P+E+B combination * |
E. coli DSM 613 | T4 | 108 | EP | 0.049 | P+E+B combination * |
E. coli DSM 613 | - | - | - | - | Growth control |
P. syringae DSM 21482 | Phi6 | 108 | RG | 25 | Phage + extract |
P. syringae DSM 21482 | - | - | RG | 25 | Extract |
P. syringae DSM 21482 | Phi6 | 108 | RG | 0.78 | P+E+B combination * |
P. syringae DSM 21482 | - | - | - | - | Growth control |
E. coli DSM 5695 | MS2 | 108 | RG | 25 | Phage + extract |
E. coli DSM 5695 | - | - | RG | 25 | Extract |
E. coli DSM 5695 | MS2 | 108 | RG | 3.125 | P+E+B combination * |
E. coli DSM 5695 | - | - | - | - | Growth control |
E. coli DSM 613 | T4 | 108 | RG | 25 | Phage + extract |
E. coli DSM 613 | - | - | RG | 25 | Extract |
E. coli DSM 613 | T4 | 108 | RG | 0.78 | P+E+B combination * |
E. coli DSM 613 | - | - | - | - | Growth control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stachurska, X.; Mizielińska, M.; Ordon, M.; Nawrotek, P. Combinations of Echinacea (Echinacea purpurea) and Rue (Ruta gravolens) Plant Extracts with Lytic Phages: A Study on Interactions. Appl. Sci. 2023, 13, 4575. https://doi.org/10.3390/app13074575
Stachurska X, Mizielińska M, Ordon M, Nawrotek P. Combinations of Echinacea (Echinacea purpurea) and Rue (Ruta gravolens) Plant Extracts with Lytic Phages: A Study on Interactions. Applied Sciences. 2023; 13(7):4575. https://doi.org/10.3390/app13074575
Chicago/Turabian StyleStachurska, Xymena, Małgorzata Mizielińska, Magdalena Ordon, and Paweł Nawrotek. 2023. "Combinations of Echinacea (Echinacea purpurea) and Rue (Ruta gravolens) Plant Extracts with Lytic Phages: A Study on Interactions" Applied Sciences 13, no. 7: 4575. https://doi.org/10.3390/app13074575
APA StyleStachurska, X., Mizielińska, M., Ordon, M., & Nawrotek, P. (2023). Combinations of Echinacea (Echinacea purpurea) and Rue (Ruta gravolens) Plant Extracts with Lytic Phages: A Study on Interactions. Applied Sciences, 13(7), 4575. https://doi.org/10.3390/app13074575