Fourier Ptychographic Reconstruction Method of Self-Training Physical Model
Abstract
:1. Introduction
2. Principle of FPM
2.1. Fourier Ptychographic Microscopy Device
2.2. Fourier Ptychographic Microscopy Imaging Process
2.3. Fourier Ptychographic Reconstruction Process
2.4. Evaluation Indicators
2.4.1. Peak Signal-to-Noise Ratio
2.4.2. Structural Similarity
3. Self-Training SwinIR Network Structure
3.1. Overall Network Structure
3.2. Subnetwork Structure
3.2.1. Shallow Feature Extraction Module
3.2.2. Deep Feature Extraction Module
3.2.3. Feature Fusion
3.2.4. Reconstruction Module
4. Experimental Results and Analysis
4.1. Construction of Data Sets
4.1.1. Dual-Channel Synthetic Input
4.1.2. Construction of Real Data Set
4.1.3. Experimental Data Preparation
4.2. The Selection of Network Hyperparameters under Noise Data
4.3. Comparison and Analysis of Reconstruction Methods under Different Noise
4.3.1. Comparison Results and Analysis of Reconstruction Methods under the SAME Noise
4.3.2. Comparison and Analysis of Reconstruction Methods under Different Noises
4.3.3. Time Comparison Results of Reconstruction Methods
4.3.4. Real Image Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, G.; Horstmeyer, R.; Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 2013, 7, 739–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillman, T.R.; Gutzler, T.; Alexandrov, S.A.; Sampson, D.D. High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy. Opt. Express 2009, 17, 7873–7892. [Google Scholar] [CrossRef] [PubMed]
- Gutzler, T.; Hillman, T.R.; Alexandrov, S.A.; Sampson, D.D. Coherent aperture-synthesis, wide-field, highresolution holographic microscopy of biological tissue. Opt. Lett. 2010, 35, 1136–1138. [Google Scholar] [CrossRef]
- Granero, L.; Micó, V.; Zalevsky, Z.; García, J. Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information. Appl. Opt. 2010, 49, 845–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilaire, P.S.; Benton, S.A.; Lucente, M.E. Synthetic aperture holography: A novel approach to threedimensional displays. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 1992, 9, 1969–1977. [Google Scholar] [CrossRef] [Green Version]
- Binet, R.; Colineau, J.; Lehureau, J.-C. Short-range synthetic aperture imaging at 633 nm by digital holography. Appl. Opt. 2002, 41, 4775–4782. [Google Scholar] [CrossRef]
- García, J.; Zalevsky, Z.; Fixler, D. Synthetic aperture superresolution by speckle pattern projection. Opt. Express 2005, 13, 6073–6078. [Google Scholar] [CrossRef]
- Alexandrov, S.A.; Hillman, T.R.; Gutzler, T.; Sampson, D.D. Synthetic Aperture Fourier Holographic Optical Microscopy. Phys. Rev. Lett. 2006, 97, 168102. [Google Scholar] [CrossRef]
- Mico, V.; Zalevsky, Z.; García-Martínez, P.; García, J. Synthetic aperture superresolution with multiple off-axis holograms. J. Opt. Soc. Am. A 2006, 23, 3162–3170. [Google Scholar] [CrossRef]
- Mico, V.; Zalevsky, Z.; García, J. Synthetic aperture microscopy using off-axis illumination and polarization coding. Opt. Commun. 2007, 276, 209–217. [Google Scholar] [CrossRef]
- Martínez-León, L.; Javidi, B. Synthetic aperture single-exposure on-axis digital holography. Opt. Express 2008, 16, 161–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiden, A.; Rodenburg, J.M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 2009, 109, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
- Candes, E.J.; Strohmer, T.; Voroninski, V. PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming. Commun. Pure Appl. Math. 2013, 66, 1241–1274. [Google Scholar] [CrossRef] [Green Version]
- Fienup, J.R. Phase retrieval algorithms: A personal tour [Invited]. Appl. Opt. 2013, 52, 45. [Google Scholar] [CrossRef] [Green Version]
- Gerchberg, R.W. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972, 35, 237–246. [Google Scholar]
- Fienup, J.R. Phase retrieval algorithms: A comparison. Appl. Opt. 1982, 21, 2758–2769. [Google Scholar] [CrossRef] [Green Version]
- Gonsalves, R.A. Phase Retrieval and Diversity in Adaptive Optics. Opt. Eng. 1982, 21, 215829. [Google Scholar] [CrossRef]
- Millane, R.P. Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 1990, 7, 394–411. [Google Scholar] [CrossRef]
- Refregier, P.; Javidi, B. Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 1995, 20, 767–769. [Google Scholar] [CrossRef]
- Miao, J.; Sayre, D.; Chapman, H.N. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J. Opt. Soc. Am. A 1998, 15, 1662–1669. [Google Scholar] [CrossRef]
- Paganin, D.; Mayo, S.C.; Gureyev, T.E.; Miller, P.R.; Wilkins, S.W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 2002, 206, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Weitkamp, T.; Bunk, O.; David, C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat. Phys. 2006, 2, 258–261. [Google Scholar] [CrossRef] [Green Version]
- Rodenburg, J.M.; Hurst, A.C.; Cullis, A.G.; Dobson, B.R.; Pfeiffer, F.; Bunk, O.; David, C.; Jefimovs, K.; Johnson, I. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 2007, 98, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Deb, K.; Kalyanmoy, D. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- De Castro, L.N.; Von Zuben, F.J. Learning and optimization using the clonal selection principle. IEEE Trans. Evol. Comput. 2002, 6, 239–251. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Lin, C.-J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Papadimitriou, C.H.; Steiglitz, K. Combinatorial Optimization: Algorithms and Complexity; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1982. [Google Scholar]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Hopfield, J.J.; Tank D, W. Neural computation of decisions in optimization problems. Biol. Cybern. 1985, 52, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1996, 26, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Wolpert, D.H.; Macready W, G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Osuna, E.; Freund, R.; Girosit, F. Training support vector machines: An application to face detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997; pp. 130–136. [Google Scholar] [CrossRef]
- Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 1999, 3, 257–271. [Google Scholar] [CrossRef] [Green Version]
- Bertsekas, D.; Tsitsiklis, J. Parallel and Distributed Computation; Athena Scientific: Belmont, MA, USA, 1989. [Google Scholar]
- Deb, K.; Deb, K. Multi-objective Optimization. In Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques; Burke, E.K., Kendall, G., Eds.; Springer: Boston, MA, USA, 2014; pp. 403–449. [Google Scholar]
- Luenberger, D.G.; Ye, Y. Linear and Nonlinear Programming; Springer Publishing Company, Incorporated: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Gerchberg, R.; Saxton, W. Phase determination for image and diffraction plane pictures in the electron microscope. Optik 1971, 34, 275–284. [Google Scholar]
- Zuo, C.; Sun, J.; Chen, Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy. Opt. Express 2016, 24, 20724–20744. [Google Scholar] [CrossRef] [PubMed]
- Bian, L.; Suo, J.; Zheng, G.; Guo, K.; Chen, F.; Dai, Q. Fourier ptychographic reconstruction using Wirtinger flow optimization. Opt. Express 2015, 23, 4856–4866. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Li, X.; Ramchandran, K.; Waller, L. Multiplexed coded illumination for Fourier Ptychography with an LED array microscope. Biomed. Opt. Express 2014, 5, 2376–2389. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Guo, K.; Liao, J.; Zheng, G. Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow. Biomed. Opt. Express 2018, 9, 3306–3319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Jiang, S.; Dixit, K.; Song, P.; Zhang, X.; Ji, X.; Li, X. Neural network model assisted Fourier ptychography with Zernike aberration recovery and total variation constraint. J. Biomed. Opt. 2021, 26, 036502. [Google Scholar] [CrossRef]
- Sun, M.; Shao, L.; Zhu, Y.; Zhang, Y.; Wang, S.; Wang, Y.; Diao, Z.; Li, D.; Mu, Q.; Xuan, L. Double-flow convolutional neural network for rapid large field of view Fourier ptychographic reconstruction. J. Biophotonics 2021, 14, e202000444. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, T.; Li, J.; Zhang, Y.; Jiang, S.; Chen, Y.; Zhang, J. Physics-based learning with channel attention for Fourier ptychographic microscopy. J. Biophotonics 2022, 15, e202100296. [Google Scholar] [CrossRef]
- Wang, X.; Piao, Y.; Yu, J.; Li, J.; Sun, H.; Jin, Y.; Liu, L.; Xu, T. Deep Multi-Feature Transfer Network for Fourier Ptychographic Microscopy Imaging Reconstruction. Sensors 2022, 22, 1237. [Google Scholar] [CrossRef]
- Wang, X.; Piao, Y.; Jin, Y.; Li, J.; Han, Q.; Yu, J. A Fourier Ptychographic Microscopy Reconstruction Method Based on SwinIR Physical Model. J. Phys. Conf. Ser. 2022, 2400, 012008. [Google Scholar] [CrossRef]
- Cong, P.; Zhou, J.; Li, S.; Lv, K.; Feng, H. Citrus Tree Crown Segmentation of Orchard Spraying Robot Based on RGB-D Image and Improved Mask R-CNN. Appl. Sci. 2022, 13, 164. [Google Scholar] [CrossRef]
- Song, G.; Wang, Z. An Efficient Hidden Markov Model with Periodic Recurrent Neural Network Observer for Music Beat Tracking. Electronics 2022, 11, 4186. [Google Scholar] [CrossRef]
- Peng, C.; Wu, J.; Wang, Q.; Gui, W.; Tang, Z. Remaining Useful Life Prediction Using Dual-Channel LSTM with Time Feature and Its Difference. Entropy 2022, 24, 1818. [Google Scholar] [CrossRef] [PubMed]
- Novitasari, D.C.R.; Fatmawati, F.; Hendradi, R.; Rohayani, H.; Nariswari, R.; Arnita, A.; Hadi, M.I.; Saputra, R.A.; Primadewi, A. Image Fundus Classification System for Diabetic Retinopathy Stage Detection Using Hybrid CNN-DELM. Big Data Cogn. Comput. 2022, 6, 146. [Google Scholar] [CrossRef]
- Zuo, C.; Li, J.; Sun, J.; Fan, Y.; Zhang, J.; Lu, L.; Zhang, R.; Wang, B.; Huang, L.; Chen, Q. Transport of intensity equation: A tutorial. Opt. Lasers Eng. 2020, 135, 106187. [Google Scholar] [CrossRef]
- Kovalev, M.; Gritsenko, I.; Stsepuro, N.; Nosov, P.; Krasin, G.; Kudryashov, S. Reconstructing the Spatial Parameters of a Laser Beam Using the Transport-of-Intensity Equation. Sensors 2022, 22, 1765. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van Gool, L.; Timofte, R. Swinir: Image restoration using swin transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 1833–1844. [Google Scholar]
L2-Loss PNSR/SSIM | SSIM PSNR/SSIM | L2-Loss + SSIM PSNR/SSIM | |
---|---|---|---|
Amplitude | 36.000/0.970 | 32.666/0.950 | 34.121/0.955 |
Phase | 23.414/0.963 | 13.336/0.803 | 21.988/0.899 |
Number of Classes | Method | Amplitude | Phase | ||
---|---|---|---|---|---|
PSNR (dB) | SSIM | PSNR (dB) | SSIM | ||
1 | G-S | 25.538 | 0.739 | 7.090 | 0.186 |
A-S | 25.616 | 0.742 | 7.117 | 0.189 | |
Zhang | 23.807 | 0.935 | 21.255 | 0.900 | |
Jiang | 25.126 | 0.812 | 19.467 | 0.886 | |
STPM-FPM | 36.000 | 0.970 | 23.414 | 0.963 | |
2 | G-S | 24.111 | 0.764 | 18.379 | 0.435 |
A-S | 24.097 | 0.766 | 18.439 | 0.439 | |
Zhang | 22.590 | 0.939 | 9.200 | 0.529 | |
Jiang | 27.202 | 0.800 | 28.273 | 0.698 | |
STPM-FPM | 32.761 | 0.958 | 30.922 | 0.955 | |
3 | G-S | 23.945 | 0.718 | 7.015 | 0.178 |
A-S | 23.985 | 0.718 | 7.013 | 0.181 | |
Zhang | 22.101 | 0.936 | 22.957 | 0.922 | |
Jiang | 17.888 | 0.753 | 12.654 | 0.679 | |
STPM-FPM | 34.524 | 0.974 | 24.887 | 0.957 |
Noise Size | Method | Amplitude | Phase | ||
---|---|---|---|---|---|
PSNR (dB) | SSIM | PSNR (dB) | SSIM | ||
1 × 10−4 | G-S | 27.978 | 0.794 | 12.052 | 0.228 |
A-S | 27.970 | 0.790 | 12.046 | 0.227 | |
Zhang | 21.067 | 0.845 | 23.605 | 0.936 | |
Jiang | 18.209 | 0.767 | 19.909 | 0.854 | |
STPM-FPM | 33.861 | 0.971 | 26.093 | 0.951 | |
2 × 10−4 | G-S | 24.492 | 0.650 | 12.295 | 0.246 |
A-S | 24.468 | 0.647 | 12.280 | 0.246 | |
Zhang | 21.083 | 0.849 | 23.534 | 0.935 | |
Jiang | 18.209 | 0.767 | 19.909 | 0.854 | |
STPM-FPM | 34.649 | 0.965 | 26.787 | 0.947 | |
3 × 10−4 | G-S | 22.693 | 0.562 | 12.497 | 0.262 |
A-S | 22.683 | 0.562 | 12.490 | 0.261 | |
Zhang | 20.334 | 0.838 | 24.100 | 0.933 | |
Jiang | 18.209 | 0.767 | 19.909 | 0.854 | |
STPM-FPM | 36.949 | 0.982 | 25.889 | 0.943 |
Reconstruction Method | Iteration Times | Reconstruction Time |
---|---|---|
G-S | 50 | 2.170 s |
A-S | 50 | 2.744 s |
Jiang et al. | 20 | 33.503 s |
Zhang et al. | 20 | 204.304 s |
STPM-FPM | 0 | 0.139 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Piao, Y.; Jin, Y.; Li, J.; Lin, Z.; Cui, J.; Xu, T. Fourier Ptychographic Reconstruction Method of Self-Training Physical Model. Appl. Sci. 2023, 13, 3590. https://doi.org/10.3390/app13063590
Wang X, Piao Y, Jin Y, Li J, Lin Z, Cui J, Xu T. Fourier Ptychographic Reconstruction Method of Self-Training Physical Model. Applied Sciences. 2023; 13(6):3590. https://doi.org/10.3390/app13063590
Chicago/Turabian StyleWang, Xiaoli, Yan Piao, Yuanshang Jin, Jie Li, Zechuan Lin, Jie Cui, and Tingfa Xu. 2023. "Fourier Ptychographic Reconstruction Method of Self-Training Physical Model" Applied Sciences 13, no. 6: 3590. https://doi.org/10.3390/app13063590
APA StyleWang, X., Piao, Y., Jin, Y., Li, J., Lin, Z., Cui, J., & Xu, T. (2023). Fourier Ptychographic Reconstruction Method of Self-Training Physical Model. Applied Sciences, 13(6), 3590. https://doi.org/10.3390/app13063590