Effect of Spring-Mass-Damper Pedestrian Models on the Performance of Low-Frequency or Lightweight Glazed Floors
Abstract
:1. Introduction
2. Research Methods, Materials and Models
2.1. Selected Floor Systems
2.2. Selected SMD Models of Literature
2.3. Equivalent-Force Deterministic Model
3. Parametric Numerical Analysis
3.1. Modelling
3.2. Structural Performance Indicators
4. Discussion of Numerical Results
4.1. Floor Response
4.2. High-Mass Floor Sensitivity to Loading Strategy
4.3. Low-Mass Floor Sensitivity to Loading Strategy
4.4. Comparison of Low-Frequency and Low-Mass Floors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bachmann, H.; Ammann, W. Vibrations in Structures: Induced by Man and Machines; International Association for Bridge and Structural Engineering: Zurich, Switzerland, 1987. [Google Scholar]
- Sedlacek, G.; Heinemeyer, C.; Butz, C. Generalisation of Criteria for Floor Vibrations for Industrial, Office, Residential and Public Building and Gymnasium Halls; European Commission: Luxembourg, 2006.
- Shahabpoor, E.; Pavic, A.; Racic, V. Interaction between Walking Humans and Structures in Vertical Direction: A Literature Review. Shock Vib. 2016, 2016, 3430285. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Georgakis, C.T.; Chen, J. Biomechanically excited SMD model of a walking pedestrian. J. Bridge Eng. 2016, 21, C4016003. [Google Scholar] [CrossRef]
- Silva, F.T.; Brito, H.M.B.F.; Pimentel, R.L. Modelling of crowd load in vertical direction using biodynamic model for pedestrians crossing footbridges. Can. J. Civ. Eng. 2013, 40, 1196–1204. [Google Scholar] [CrossRef]
- Toso, M.A.; Gomes, H.M.; da Silva, F.T.; Pimentel, R.L. Experimentally fitted biodynamic models for pedestrian-structure interaction in walking situations. Mech. Syst. Signal Process. 2016, 72–73, 590–606. [Google Scholar] [CrossRef]
- Pfeil, M.S.; Varela, W.D.; de Paula Amador da Costa, N. Experimental calibration of a one degree of freedom biodynamic model to simulate human walking-structure interaction. Eng. Struct. 2022, 262, 114330. [Google Scholar]
- Wang, H.; Chen, J.; Brownjohn, J.M.W. Parameter identification of pedestrian’s spring-mass-damper model by ground reaction force records through a particle filter approach. J. Sound Vib. 2017, 411, 409–421. [Google Scholar] [CrossRef]
- Pena, A.N.P.; de Brito, J.L.V.; da Silva, F.F.G.; Pimentel, R.L. Pedestrian Biodynamic Model for Vibration Serviceability of Footbridges in Lateral Direction. J. Vib. Eng. Technol. 2021, 9, 1223–1237. [Google Scholar] [CrossRef]
- Bocian, M.; Macdonald, J.H.G.; Burn, J.F. Biomechanically inspired modeling of pedestrian-induced vertical self-excited forces. J. Bridge Eng. 2013, 18, 1336–1346. [Google Scholar] [CrossRef]
- Koopman, B.; Grootenboer, H.J.; de Jongh, H.J. An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking. J. Biomech. 1995, 28, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Geyer, H.; Seyfarth, A.; Blickhan, R. Compliant leg behaviour explains basic dynamics of walking and running. Proc. R. Soc. Biol. Sci. 2006, 273, 2861–2867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.S.; Qin, J.W.; Law, S.S. A three-dimensional human walking model. J. Sound Vib. 2015, 357, 437–456. [Google Scholar] [CrossRef]
- CEN/TC 250; prCEN/TS xxxx-1, 2019—In-Plane Loaded Glass Components. CEN—European Committee for Standardization: Brussels, Belgium, 2019.
- CEN/TC 250; prCEN/TS xxxx-2, 2019—Out of-Plane Loaded Glass Components. CEN—European Committee for Standardization: Brussels, Belgium, 2019.
- Bedon, C. Experimental investigation on vibration sensitivity of an indoor glass footbridge to walking conditions. J. Build. Eng. 2020, 29, 101195. [Google Scholar] [CrossRef]
- Bedon, C. Diagnostic analysis and dynamic identification of a glass suspension footbridge via on-site vibration experiments and FE numerical modelling. Compos. Struct. 2019, 216, 366–378. [Google Scholar] [CrossRef]
- Bedon, C.; Noè, S. Post-Breakage Vibration Frequency Analysis of In-Service Pedestrian Laminated Glass Modular Units. Vibration 2021, 4, 836–852. [Google Scholar] [CrossRef]
- Bedon, C.; Noè, S. Uncoupled Wi-Fi Body CoM Acceleration for the Analysis of Lightweight Glass Slabs under Random Walks. J. Sens. Actuator Netw. 2022, 11, 10. [Google Scholar] [CrossRef]
- Bedon, C.; Fasan, M.; Noè, S. Body Motion Sensor Analysis of Human-Induced Dynamic Load Factor (DLF) for Normal Walks on Slender Transparent Floors. J. Sens. Actuator Netw. 2022, 11, 81. [Google Scholar] [CrossRef]
- ABAQUS Computer Software v.6.14; Simulia: Dassault, RI, USA, 2021.
- Varela, W.D.; Pfeil, M.S.; da Costa, N.P.A. Experimental investigation on human walking loading parameters and biodynamic model. J. Vib. Eng. Technol. 2020, 8, 883–892. [Google Scholar] [CrossRef]
- Clough, R.W.; Penzien, J. Dynamics of Structures; McGrawHill: Berkeley, CA, USA, 1993. [Google Scholar]
Floor | Material | Span [m] | Surface [m2] | Frequency f1 [Hz] | Mass Ms [kg] | M/Ms |
---|---|---|---|---|---|---|
F#1 | Concrete | 5 | 30 | 11.05 | 10,350 | 1/130 |
F#2 | Concrete | 5 | 30 | 5.30 | 3530 | 1/44 |
F#3 | Glass | 14.5 | 40.6 | 7.28 * | 10,730 | 1/134 |
F#4 | Glass | 2.65 | 3.58 | 14.30 * | 320 | 1/4 |
Coefficient | fp (Hz) | |
---|---|---|
≤1.75 | 1.75 ÷ 2 | |
K1 | −8 fp + 38 | 24 fp − 18 |
K2 | 376 fp − 844 | −404 fp + 521 |
K3 | −2804 fp + 6025 | 4224 fp − 6274 |
K4 | 6308 fp − 16,573 | −29,144 fp + 45,468 |
K5 | 1732 fp − 13,619 | 109,976 fp − 175,808 |
K6 | −24,638 fp + 16,045 | −217,424 fp + 353,403 |
K7 | 31,836 fp − 33,614 | 212,776 fp − 350,259 |
K8 | −12,948 fp + 15,532 | −81,572 fp + 135,624 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedon, C.; Santos, F.A. Effect of Spring-Mass-Damper Pedestrian Models on the Performance of Low-Frequency or Lightweight Glazed Floors. Appl. Sci. 2023, 13, 4023. https://doi.org/10.3390/app13064023
Bedon C, Santos FA. Effect of Spring-Mass-Damper Pedestrian Models on the Performance of Low-Frequency or Lightweight Glazed Floors. Applied Sciences. 2023; 13(6):4023. https://doi.org/10.3390/app13064023
Chicago/Turabian StyleBedon, Chiara, and Filipe A. Santos. 2023. "Effect of Spring-Mass-Damper Pedestrian Models on the Performance of Low-Frequency or Lightweight Glazed Floors" Applied Sciences 13, no. 6: 4023. https://doi.org/10.3390/app13064023
APA StyleBedon, C., & Santos, F. A. (2023). Effect of Spring-Mass-Damper Pedestrian Models on the Performance of Low-Frequency or Lightweight Glazed Floors. Applied Sciences, 13(6), 4023. https://doi.org/10.3390/app13064023