Impurity Behavior in Plasma Recovery after a Vacuum Failure in the Experimental Advanced Superconducting Tokamak
Abstract
:1. Introduction
- a lower tungsten density in the core plasma, lower tungsten influx, and the achievement of a higher energy confinement time and density limit in T-10 tokamak [11];
- a reduced peak heat flux on the divertor from 5 to 2 MW m−2, with 150 and 300 mg of pre-discharge lithium evaporation in NSTX [12];
- an increased duration of enhanced H-mode pedestal phases of up to 350 ms with the injection of a powder of lithium particles 45 μm in diameter in DIII-D [13];
- long-pulse, high-confinement H-mode discharge with a duration of over 30 s through advanced lithium wall conditioning in EAST [14].
2. Experimental Setup
3. EUV Spectra Analysis in the Plasma Recovery
3.1. Discharge Waveform
3.2. Impurity Behavior Analysis
4. The Effect of Lithium Granule Injection on Impurity Suppression and Plasma Performance Improvement
4.1. Typical Recovery Discharge with Lithium Granule Injection
4.2. Suppression of Runaway Electron
4.3. Suppression of Impurity Influx
4.4. Extension of Lifetime of Collisional Plasma
5. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winkel, T.; Orchard, J. Leak evaluation in JET and its consequences for future fusion machines. Vacuum 1990, 41, 1988–1991. [Google Scholar] [CrossRef]
- Hu, J.S.; Li, J.G. Plasma recovery after various events in HT-7 superconducting tokamak. Fusion Eng. Des. 2008, 83, 689–694. [Google Scholar] [CrossRef]
- Saibene, G.; Rossi, A.; Monk, R.D.; Orchard, J.; Andrew, P.; Barnsley, R.; Cushing, D.; Coad, P.J.; Davies, S.; Erents, K.; et al. Review of vacuum vessel conditioning procedures at JET and their impact on plasma operation. J. Nucl. Mater. 1995, 220–222, 617–622. [Google Scholar] [CrossRef]
- Peacock, A.T.; Coad, J.P.; Dietz, K.J.; Israel, G.; Jensen, H.S.; Pick, M.A.; Saibene, G.; Bergsaker, H. Operational experience with the JET beryllium evaporators. In Proceedings of the 16th Symposium on Fusion Technology, London, UK, 3–7 September 1990; pp. 468–472. [Google Scholar]
- Gauthier, E.; Cal, E.d.L.; Beaumont, B.; Becoulet, A.; Gil, C.; Grisolia, C.; Grosman, A.; Hutter, T.; Kuus, H.; Ladurelle, L.; et al. Wall conditioning technique development in Tore Supra with permanent magnetic field by ICRF wave injection. J. Nucl. Mater. 1997, 241–243, 553–558. [Google Scholar] [CrossRef]
- Wang, J.R.; Hu, J.S.; Yu, Y.W.; Cao, B. Recovery of vacuum condition and plasma performance after vessel vent in EAST tokamak. Vacuum 2021, 183, 109854. [Google Scholar] [CrossRef]
- Zhou, R.J.; Hu, L.Q.; Li, E.Z.; Xu, M.; Zhong, G.Q.; Xu, L.Q.; Lin, S.Y.; Zhang, J.Z. Investigation of ring-like runaway electron beams in the EAST tokamak. Plasma Phys. Control. Fusion 2013, 55, 055006. [Google Scholar] [CrossRef]
- Wauters, T.; Stange, T.; Laqua, H.P.; Brakel, R.; Marsen, S.; Moseev, D.; Pedersen, T.S.; Volzke, O.; Brezinsek, S.; Dinklage, A. Wall Conditioning by ECRH and GDC at the Wendelstein 7-X stellarator. In Proceedings of the 43rd EPS Conference on Plasma Physics, Leuven, Belgium, 4–8 July 2016; p. 4.047. [Google Scholar]
- Yu, Y.W.; Hu, J.S.; Zuo, G.Z.; Sun, Z.; Wang, L.; Xu, W.; Wang, J.R.; Cao, B.; Gao, W.; Xu, J.C.; et al. Control of hydrogen content and fuel recycling for long pulse high performance plasma operation in EAST. Nucl. Fusion 2019, 59, 126036. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, J.S.; Zuo, G.Z.; Ren, J.; Cao, B.; Li, J.G.; Mansfield, D.K. Influence of lithium coatings with large-area coverage on EAST plasma performance. Fusion Eng. Des. 2014, 89, 2886–2893. [Google Scholar] [CrossRef]
- Vershkov, V.A.; Sarychev, D.V.; Notkin, G.E.; Shelukhin, D.A.; Buldakov, M.A.; Dnestrovskij, Y.N.; Grashin, S.A.; Kirneva, N.A.; Krupin, V.A.; Klyuchnikov, L.A.; et al. Review of recent experiments on the T-10 tokamak with all metal wall. Nucl. Fusion 2017, 57, 102017. [Google Scholar] [CrossRef]
- Gray, T.K.; Canik, J.M.; Maingi, R.; McLean, A.G.; Ahn, J.W.; Jaworkski, M.A.; Kaita, R.; Ono, M.; Paul, S.F. The effects of increasing lithium deposition on the power exhaust channel in NSTX. Nucl. Fusion 2014, 54, 023001. [Google Scholar] [CrossRef]
- Osborne, T.H.; Jackson, G.L.; Yan, Z.; Maingi, R.; Mansfield, D.K.; Grierson, B.A.; Chrobak, C.P.; McLean, A.G.; Allen, S.L.; Battaglia, D.J.; et al. Enhanced H-mode pedestals with lithium injection in DIII-D. Nucl. Fusion 2015, 55, 063018. [Google Scholar] [CrossRef]
- Guo, H.Y.; Li, J.; Wan, B.N.; Gong, X.Z.; Liang, Y.F.; Xu, G.S.; Zhang, X.D.; Ding, S.Y.; Gan, K.F.; Hu, J.S.; et al. Recent advances in long-pulse high-confinement plasma operations in Experimental Advanced Superconducting Tokamak. Phys. Plasmas 2014, 21, 056107. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.T. An overview of the EAST project. Fusion Eng. Des. 2007, 82, 463–471. [Google Scholar] [CrossRef]
- Yao, D.M.; Luo, G.N.; Du, S.J.; Cao, L.; Zhou, Z.B.; Xu, T.J.; Ji, X.; Liu, C.L.; Liang, C.; Li, Q.; et al. Overview of the EAST in-vessel components upgrade. Fusion Eng. Des. 2015, 98–99, 1692–1695. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, L.; Cheng, Y.X.; Morita, S.; Li, L.; Zhang, W.M.; Zhang, F.L.; Zhao, Z.H.; Zhou, T.F.; Wu, Z.W.; et al. An extreme ultraviolet spectrometer working at 10–130 Å for tungsten spectra observation with high spectral resolution and fast-time response in Experimental Advanced Superconducting Tokamak. Nucl. Instrum. Methods Phys. Res. Sect. A 2021, 1010, 165545. [Google Scholar] [CrossRef]
- Zhang, L.; Morita, S.; Xu, Z.; Wu, Z.; Zhang, P.; Wu, C.; Gao, W.; Ohishi, T.; Goto, M.; Shen, J.; et al. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak. Rev. Sci. Instrum. 2015, 86, 123509. [Google Scholar] [CrossRef]
- Li, L.; Zhang, L.; Xu, Z.; Morita, S.; Cheng, Y.X.; Zhang, F.L.; Zhang, W.M.; Duan, Y.M.; Zang, Q.; Wang, S.X.; et al. Line identification of extreme ultraviolet (EUV) spectra from low-Z impurity ions in EAST tokamak plasmas. Plasma Sci. Technol. 2021, 23, 075102. [Google Scholar] [CrossRef]
- Zhang, W.M.; Zhang, L.; Cheng, Y.X.; Morita, S.; Wang, Z.X.; Hu, A.L.; Zhang, F.L.; Duan, Y.M.; Zhou, T.F.; Wang, S.X.; et al. Line identification of extreme ultraviolet (EUV) spectra from iron, copper and molybdenum ions in EAST tokamak. Phys. Scr. 2022, 97, 045604. [Google Scholar] [CrossRef]
- Liu, H.Q.; Jie, Y.X.; Ding, W.X.; Brower, D.L.; Zou, Z.Y.; Qian, J.P.; Li, W.M.; Yang, Y.; Zeng, L.; Zhang, S.B.; et al. Internal magnetic field measurements by laser-based POlarimeter-INTerferometer (POINT) system on EAST. J. Instrum. 2016, 11, C01049. [Google Scholar] [CrossRef]
- Han, X.; Liu, X.; Liu, Y.; Domier, C.W.; Luhmann, N.C.; Li, E.Z.; Hu, L.Q.; Gao, X. Design and characterization of a 32-channel heterodyne radiometer for electron cyclotron emission measurements on experimental advanced superconducting tokamak. Rev. Sci. Instrum. 2014, 85, 073506. [Google Scholar] [CrossRef]
- Lu, H.W.; Hu, L.Q.; Chen, Z.Y.; Jang, Y.; Lin, S.Y. Observation of runaway electrons in the first EAST ohmic discharge. J. Plasma Phys. 2008, 74, 445–453. [Google Scholar] [CrossRef]
- Lu, H.W.; Hu, L.Q.; Lin, S.Y.; Wang, S.F.; Zhong, G.Q. Runaway Electron Measurements in the EAST Tokamak. Contrib. Plasma Phys. 2010, 50, 141–145. [Google Scholar] [CrossRef]
Status | Shot No. | Ip (kA) t1/t2 | ne (1019 m−3) t1/t2 | <λ> (Å) |
---|---|---|---|---|
Recovery | #84601 | 50/300 | 0.3/2.2 | 8–65 |
320–495 | ||||
#84599 | 50/300 | 0.3/2.3 | 65–190 | |
#84600 | 50/350 | 0.3/3.4 | 190–320 | |
Normal | #84649 | 70/450 | 0.1/4.3 | 8–65 |
320–495 | ||||
#84678 | 70/400 | 0.2/2.1 | 65–190 | |
#85126 | 70/500 | 0.1/3.3 | 190–320 |
Shot Num. | Ip (kA) (t1/t2) | ne (1019 m−3) (t1/t2) | Vloop (V) (t2) | Accumulation of Li Amount (mg) (t2) |
---|---|---|---|---|
84602 | 52/300 | 0.2/2.2 | 0.778 | 0 |
84603 | 54/300 | 0.2/2.3 | 0.694 | ~18 |
84605 | 53/300 | 0.2/2.7 | 0.690 | ~100 |
84606 | 55/300 | 0.2/3.1 | 0.691 | ~226 |
84607 | 56/300 | 0.3/2.6 | 0.671 | ~286 |
84609 | 55/300 | 0.2/2.5 | 0.684 | ~379 |
84611 | 56/300 | 0.2/2.3 | 0.628 | ~428 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Zhang, L.; Zhou, R.; Yang, Y.; Zhang, W.; Cheng, Y.; Morita, S.; Ti, A.; Hu, A.; Sun, Z.; et al. Impurity Behavior in Plasma Recovery after a Vacuum Failure in the Experimental Advanced Superconducting Tokamak. Appl. Sci. 2023, 13, 4338. https://doi.org/10.3390/app13074338
Zhao Z, Zhang L, Zhou R, Yang Y, Zhang W, Cheng Y, Morita S, Ti A, Hu A, Sun Z, et al. Impurity Behavior in Plasma Recovery after a Vacuum Failure in the Experimental Advanced Superconducting Tokamak. Applied Sciences. 2023; 13(7):4338. https://doi.org/10.3390/app13074338
Chicago/Turabian StyleZhao, Zihang, Ling Zhang, Ruijie Zhou, Yang Yang, Wenmin Zhang, Yunxin Cheng, Shigeru Morita, Ang Ti, Ailan Hu, Zhen Sun, and et al. 2023. "Impurity Behavior in Plasma Recovery after a Vacuum Failure in the Experimental Advanced Superconducting Tokamak" Applied Sciences 13, no. 7: 4338. https://doi.org/10.3390/app13074338
APA StyleZhao, Z., Zhang, L., Zhou, R., Yang, Y., Zhang, W., Cheng, Y., Morita, S., Ti, A., Hu, A., Sun, Z., Zhang, F., Zhao, W., Li, Z., Cao, Y., Zuo, G., & Liu, H. (2023). Impurity Behavior in Plasma Recovery after a Vacuum Failure in the Experimental Advanced Superconducting Tokamak. Applied Sciences, 13(7), 4338. https://doi.org/10.3390/app13074338