The Influence of Fruit Pomaces on Nutritional, Pro-Health Value and Quality of Extruded Gluten-Free Snacks
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
- Chemical Analysis
2.2.1. Chemical Composition
2.2.2. Dietary Fiber Content
2.2.3. Antioxidants Content and Antioxidant Activity
- Extraction Procedure
- Total Phenolic Content (TPC)
2.2.4. Determination of Total Polyphenols
2.2.5. Determination of Flavonoid Content
2.2.6. Antioxidant Activity (AA)
2.2.7. Physical Properties of Extruded Corn Snacks
Determination of the Density of Extrudates
Determination of Expansion Ratio of Extrudates
Water Binding Capacity (WBC) of Extrudates
Extrudates Texture Profile Analysis (TPA) Using TA-XT Plus Texture Analyzer (Stable Micro Systems, Surrey, UK)
Instrumental Color Measurement in the CIE L* a* b* System
Statistical Evaluation of Results
3. Results and Discussion
3.1. Characteristics of Fruit Pomaces
Pomace | Total Phenolic 1 mg Catechin/g dm | ABTS EC50 (mg/mL) | ABTS (TEAC) (mgTx/g dm) | Content of Dietary Fiber (g/100 g dm) | Chemical Composition (g/100 g dm) | ||||
---|---|---|---|---|---|---|---|---|---|
Soluble Fraction | Insoluble Fraction | Protein | Total Sugar | Fat | Ash | ||||
PCHB | 36.35 ± 0.30 c | 0.47 ± 0.01 a | 19.15 ± 0.09 c | 5.71 ± 0.12 b | 61.18 ± 0.00 b | 6.80 ± 0.20 a | 38.89 ± 0.30 c | 4.70 ± 0.11 b | 3.80 ± 0.00 c |
PCH | 18.87 ± 0.53 a | 0.53 ± 0.00 c | 18.15 ± 0.17 a | 4.50 ± 0.23 a | 44.20 ± 0.37 a | 13.01 ± 0.12 b | 10.71 ± 0.45 a | 3.18 ± 0.14 a | 2.8 ± 0.17 a |
PBC | 26.73 ± 0.71 b | 0.51 ± 0.00 b | 18.75 ± 0.23 b | 5.36 ± 0.27 b | 60.15 ± 1.11 b | 17.50 ± 0.00 c | 15.23 ± 0.17 b | 10.10 ± 0.00 c | 3.20 ± 0.08 b |
Pomace | Total Phenolic 1 mg Catechin/g dm | Phenolic Acid (mg Ferulic Acid/g dm) | Flavonoids (mg Rutin/g dm) | Flavonols (mg Quercetin/g dm) | Anthocyanins (mg Cyanidin-3-Glucoside/g dm) |
---|---|---|---|---|---|
PCHB | 31.49 ± 0.23 c | 2.163 ± 0.197 b | 11.437 ± 0.053 c | 1.714 ± 0.046 c | 10.841 ± 0.332 c |
PCH | 5.89 ± 0.11 a | 0.441 ± 0.020 a | 2.289 ± 0.017 b | 0.298 ± 0.00 a | 0.475 ± 0.023 a |
PBC | 6.48 ± 0.34 b | 0.460 ± 0.024 a | 1.321 ± 0.032 a | 0.429 ± 0.021 b | 1.813 ± 0.162 b |
3.2. Characteristics of Extruded Corn Snacks
3.2.1. Chemical Composition and Pro-Health Components in Extruded Corn Snacks with Fruit Pomace
3.2.2. Quality of Extruded Corn Snacks with Fruit Pomace
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019. [Google Scholar]
- Srivastava, N.; Srivastava, M.; Alhazmi, A.; Kausar, T.; Haque, S.; Singh, R.; Ramteke, P.W.; Mishra, P.K.; Tuohy, M.; Leitgeb, M.; et al. Technological advances for improving fungal cellulase production from fruit wastes for bioenergy application: A review. Environ. Pollut. 2021, 287, 117370. [Google Scholar] [CrossRef] [PubMed]
- Kawecka, L.; Galus, S. Wytłoki owocowe—Charakterystyka i możliwości zagospodarowania (Fruit pomace—Characteristics and possibilities of recycling). Postępy Tech. Przetwórstwa Spożywczego 2021, 1, 156–167. (In Polish) [Google Scholar]
- Padayachee, A.; Day, L.; Howell, K.; Gidley, M.J. Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2017, 57, 59–81. [Google Scholar] [CrossRef]
- Gómez, M.; Martinez, M.M. Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2119–2135. [Google Scholar] [CrossRef]
- Kruczek, M.; Gumul, D.; Olech, E.; Areczuk, A.; Drygaś, B.; Drygaś, P. Diet and the Context of Fruit Industry. Econ. Environ. Stud. 2017, 17, 389–398. [Google Scholar] [CrossRef]
- Ahlborn, J.; Stephan, A.; Meckel, T.; Maheshwari, G.; Rühl, M.; Zorn, H. Upcycling of food industry side streams by basidiomycetes for production of a vegan protein source. Int. J. Recycl. Org. Waste Agric. 2019, 8, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Kołodziejczyk, K.; Sójka, M.; Abadias, M.; Viñas, I.; Guyot, S.; Baron, A. Polyphenol composition, antioxidant capacity, and antimicrobial activity of the extracts obtained from industrial sour cherry pomace. Ind. Crop. Prod. 2013, 51, 279–288. [Google Scholar] [CrossRef]
- Mayer-Miebach, E.; Adamiuk, M.; Behsnilian, D. Stability of Chokeberry Bioactive Polyphenols during Juice Processing and Stabilization of a Polyphenol-Rich Material from the By-Product. Agriculture 2012, 2, 244–258. [Google Scholar] [CrossRef] [Green Version]
- Nawirska, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Właściwości przeciwutleniające wytłoków z wybranych owoców kolorowych (Antioxidant characteristics of pomace from different fruits). Żywność Nauka Technol. Jakość 2007, 53, 120–125. (In Polish) [Google Scholar]
- Sójka, M.; Król, B. Composition of industrial seedless black currant pomace. Eur. Food Res. Technol. 2009, 228, 597–605. [Google Scholar] [CrossRef]
- Vagiri, M.; Jensen, M. Influence of juice processing factors on quality of black chokeberry pomace as a future resource for colour extraction. Food Chem. 2017, 217, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hsieh, F.; Heymann, H.; Huff, H. Effect of Process Conditions on the Physical and Sensory Properties of Extruded Oat-Corn Puff. J. Food Sci. 2000, 65, 1253–1259. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; de La Cruz, A.A.; Alvarez, J.C.I.; Kallio, H. Chemical and Functional Characterization of Kañiwa (Chenopodium pallidicaule) Grain, Extrudate and Bran. Plant Foods Hum. Nutr. 2009, 64, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Dust, J.M.; Gajda, A.M.; Flickinger, E.A.; Burkhalter, T.M.; Merchen, N.R.; Fahey, G.C. Extrusion Conditions Affect Chemical Composition and in Vitro Digestion of Select Food Ingredients. J. Agric. Food Chem. 2004, 52, 2989–2996. [Google Scholar] [CrossRef]
- Riaz, M.N. Extruders in Food Applications; CRC Press LLC: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2002. [Google Scholar]
- Viscidi, K.A.; Dougherty, M.P.; Briggs, J.; Camire, M.E. Complex phenolic compounds reduce lipid oxidation in extruded oat cereals. LWT Food Sci. Technol. 2004, 37, 789–796. [Google Scholar] [CrossRef]
- Dlamini, N.R.; Taylor, J.R.N.; Rooney, L.W. The effect of sorghum type and processing on the antioxidant properties of African sorghum-based foods. Food Chem. 2007, 105, 1412–1419. [Google Scholar] [CrossRef]
- Mink, P.J.; Scrafford, C.G.; Barraj, L.M.; Harnack, L.; Hong, C.-P.; Nettleton, J.A.; Jacobs, D.R. Flavonoid intake and cardiovascular disease mortality: A prospective study in postmenopausal women. Am. J. Clin. Nutr. 2007, 85, 895–909. [Google Scholar] [CrossRef] [Green Version]
- Yokohira, M.; Yamakawa, K.; Saoo, K.; Matsuda, Y.; Hosokawa, K.; Hashimoto, N.; Kuno, T.; Imaida, K. Antioxidant Effects of Flavonoids Used as Food Additives (Purple Corn Color, Enzymatically Modified Isoquercitrin, and Isoquercitrin) on Liver Carcinogenesis in a Rat Medium-Term Bioassay. J. Food Sci. 2008, 73, C561–C568. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; Peña, J.; Kallio, H.; Salminen, S. Dietary fiber and other functional components in two varieties of crude and extruded kiwicha (Amaranthus caudatus). J. Cereal Sci. 2009, 49, 219–224. [Google Scholar] [CrossRef]
- Camire, M.E.; Dougherty, M.P.; Briggs, J.L. Functionality of fruit powders in extruded corn breakfast cereals. Food Chem. 2007, 101, 765–770. [Google Scholar] [CrossRef]
- Stojceska, V.; Ainsworth, P.; Plunkett, A.; İbanoğlu, E.; İbanoğlu, Ş. Cauliflower by-products as a new source of dietary fibre, antioxidants and proteins in cereal based ready-to-eat expanded snacks. J. Food Eng. 2008, 87, 554–563. [Google Scholar] [CrossRef]
- Karkle, E.L.; Alavi, S.; Dogan, H. Cellular architecture and its relationship with mechanical properties in expanded extrudates containing apple pomace. Food Res. Int. 2012, 46, 10–21. [Google Scholar] [CrossRef]
- O’Shea, N.; Arendt, E.; Gallagher, E. Enhancing an Extruded Puffed Snack by Optimising Die Head Temperature, Screw Speed and Apple Pomace Inclusion. Food Bioprocess Technol. 2014, 7, 1767–1782. [Google Scholar] [CrossRef]
- Masli, M.D.P.; Gu, B.-J.; Rasco, B.A.; Ganjyal, G.M. Fiber-Rich Food Processing Byproducts Enhance the Expansion of Cornstarch Extrudates. J. Food Sci. 2018, 83, 2500–2510. [Google Scholar] [CrossRef] [PubMed]
- Pietzsch, N.; Ribeiro, J.L.D.; de Medeiros, J.F. Benefits, challenges and critical factors of success for Zero Waste: A systematic literature review. Waste Manag. 2017, 67, 324–353. [Google Scholar] [CrossRef] [PubMed]
- Hopper, A.D.; Hadjivassiliou, M.; Butt, S.; Sanders, D.S. Adult coeliac disease. BMJ 2007, 335, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Saturni, L.; Ferretti, G.; Bacchetti, T. The Gluten-Free Diet: Safety and Nutritional Quality. Nutrients 2010, 2, 16–34. [Google Scholar] [CrossRef] [Green Version]
- Tsatsaragkou, Κ.; Protonotariou, S.; Mandala, I. Structural role of fibre addition to increase knowledge of non-gluten bread. J. Cereal Sci. 2016, 67, 58–67. [Google Scholar] [CrossRef]
- Wierdsma, N.J.; van Bokhorst-de van der Schueren, M.A.E.; Berkenpas, M.; Mulder, C.J.J.; van Bodegraven, A.A. Vitamin and Mineral Deficiencies Are Highly Prevalent in Newly Diagnosed Celiac Disease Patients. Nutrients 2013, 5, 3975–3992. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- AACC. Approved Methods of the AACC, 10th ed.; AACC: St. Paul, MN, USA, 2000. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Oxidants and Antioxidants Part A; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. ISBN 0076-6879. [Google Scholar]
- Mazza, G.; Fukumoto, L.; Delaquis, P.; Girard, B.; Ewert, B. Anthocyanins, Phenolics, and Color of Cabernet Franc, Merlot, and Pinot Noir Wines from British Columbia. J. Agric. Food Chem. 1999, 47, 4009–4017. [Google Scholar] [CrossRef]
- Oomah, B.D.; Cardador-Martínez, A.; Loarca-Piña, G. Phenolics and antioxidative activities in common beans (Phaseolus vulgaris L.). J. Sci. Food Agric. 2005, 85, 935–942. [Google Scholar] [CrossRef]
- El Hariri, B.; Sallé, G.; Andary, C. Involvement of flavonoids in the resistance of two poplar cultivars to mistletoe (Viscum album L.). Protoplasma 1991, 162, 20–26. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Sokhey, A.S.; Kollengode, A.N.; Hanna, M.A. Screw Configuration Effects on Corn Starch Expansion During Extrusion. J. Food Sci. 1994, 59, 895–896. [Google Scholar] [CrossRef]
- Liszka-Skoczylas, M.; Berski, W.; Witczak, M.; Skoczylas, Ł.; Kowalska, I.; Smoleń, S.; Szlachcic, P.; Kozieł, M. The Influence of Hydroponic Potato Plant Cultivation on Selected Properties of Starch Isolated from Its Tubers. Molecules 2022, 27, 856. [Google Scholar] [CrossRef]
- Jurendić, T.; Ščetar, M. Aronia melanocarpa Products and By-Products for Health and Nutrition: A Review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef]
- Alba, K.; MacNaughtan, W.; Laws, A.P.; Foster, T.J.; Campbell, G.M.; Kontogiorgos, V. Fractionation and characterisation of dietary fibre from blackcurrant pomace. Food Hydrocoll. 2018, 81, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Jarosławska, J.; Juszkiewicz, J.; Zduńczyk, Z.; Matusevicius, P. Polyphenol-rich Blackcurrant Pomace Counteracts Impaired Antioxidant Status and Serum Lipid Profile in Rabbits Fed a Diet High in Unsaturated Fat. J. Nutr. Food Sci. 2016, 6, 1000531. [Google Scholar] [CrossRef]
- Sotillo, E.; HETTlARACHCHY, N.S. Corn Meal-Sunflower Meal Extrudates and Their Physicochemical Properties. J. Food Sci. 1994, 59, 432–435. [Google Scholar] [CrossRef]
- Singh, B.; Sekhon, K.S.; Singh, N. Effects of moisture, temperature and level of pea grits on extrusion behaviour and product characteristics of rice. Food Chem. 2007, 100, 198–202. [Google Scholar] [CrossRef]
- Henry, C.; Chapman, C. The Nutrition Handbook for Food Processors; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Gumul, D.; Ziobro, R.; Zięba, T.; Rój, E. Physicochemical Characteristics of Cereal Extrudates with Different Levels of Defatted Blackcurrant Seeds. J. Food Qual. 2013, 36, 385–393. [Google Scholar] [CrossRef]
- Brennan, C.; Brennan, M.; Derbyshire, E.; Tiwari, B.K. Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends Food Sci. Technol. 2011, 22, 570–575. [Google Scholar] [CrossRef]
- Lachman, J.; Hamouz, K.; Šulc, M.; Orsák, M.; Pivec, V.; Hejtmánková, A.; Dvořák, P.; Čepl, J. Cultivar differences of total anthocyanins and anthocyanidins in red and purple-fleshed potatoes and their relation to antioxidant activity. Food Chem. 2009, 114, 836–843. [Google Scholar] [CrossRef]
- Ahmed, F.A.; Ali, R.F.M. Bioactive Compounds and Antioxidant Activity of Fresh and Processed White Cauliflower. BioMed Res. Int. 2013, 2013, e367819. [Google Scholar] [CrossRef] [PubMed]
- Konczak, I.; Zhang, W. Anthocyanins—More Than Nature’s Colours. BioMed Res. Int. 2004, 2004, 239–240. [Google Scholar] [CrossRef] [Green Version]
- Teow, C.C.; Truong, V.-D.; McFeeters, R.F.; Thompson, R.L.; Pecota, K.V.; Yencho, G.C. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 2007, 103, 829–838. [Google Scholar] [CrossRef]
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A review on the characteristic components and potential health effects. Planta Med. 2008, 74, 1625–1634. [Google Scholar] [CrossRef] [Green Version]
- Nicoli, M.C.; Anese, M.; Parpinel, M. Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci. Technol. 1999, 10, 94–100. [Google Scholar] [CrossRef]
- Ainsworth, P.; İbanoğlu, Ş.; Plunkett, A.; İbanoğlu, E.; Stojceska, V. Effect of brewers spent grain addition and screw speed on the selected physical and nutritional properties of an extruded snack. J. Food Eng. 2007, 81, 702–709. [Google Scholar] [CrossRef]
- Stojceska, V.; Ainsworth, P.; Plunkett, A.; İbanoğlu, Ş. The effect of extrusion cooking using different water feed rates on the quality of ready-to-eat snacks made from food by-products. Food Chem. 2009, 114, 226–232. [Google Scholar] [CrossRef]
- Gumul, D.; Ziobro, R.; Zięba, T.; Rój, E. The Influence of Addition of Defatted Blackcurrant Seeds on Pro-Health Constituents and Texture of Cereal Extrudates. J. Food Qual. 2011, 34, 395–402. [Google Scholar] [CrossRef]
- Moussa-Ayoub, T.E.; Youssef, K.; El-Samahy, S.K.; Kroh, L.W.; Rohn, S. Flavonol profile of cactus fruits (Opuntia ficus-indica) enriched cereal-based extrudates: Authenticity and impact of extrusion. Food Res. Int. 2015, 78, 442–447. [Google Scholar] [CrossRef]
- Anton, A.A.; Fulcher, R.G.; Arntfield, S.D. Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chem. 2009, 113, 989–996. [Google Scholar] [CrossRef]
- Ragaee, S.; Abdel-Aal, E.-S.M.; Noaman, M. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem. 2006, 98, 32–38. [Google Scholar] [CrossRef]
- Robin, F.; Schuchmann, H.P.; Palzer, S. Dietary fiber in extruded cereals: Limitations and opportunities. Trends Food Sci. Technol. 2012, 28, 23–32. [Google Scholar] [CrossRef]
- Potter, R.; Stojceska, V.; Plunkett, A. The use of fruit powders in extruded snacks suitable for Children’s diets. LWT Food Sci. Technol. 2013, 51, 537–544. [Google Scholar] [CrossRef]
- Chessari, C.J.; Sellahewa, J.N. Extrusion Cooking Technologies and Applications; Woodhead: Cambridge, UK, 2000; pp. 83–107. [Google Scholar]
- van der Sman, R.G.M.; Broeze, J. Structuring of indirectly expanded snacks based on potato ingredients: A review. J. Food Eng. 2013, 114, 413–425. [Google Scholar] [CrossRef]
- Colonna, P.; Mercier, C. Macromolecular modifications of manioc starch components by extrusion-cooking with and without lipids. Carbohydr. Polym. 1983, 3, 87–108. [Google Scholar] [CrossRef]
- Chang, Y.K.; Silva, M.R.; Gutkoski, L.C.; Sebio, L.; Da Silva, M.A.A.P. Development of extruded snacks using jatobá (Hymenaea stigonocarpaMart) flour and cassava starch blends. J. Sci. Food Agric. 1998, 78, 59–66. [Google Scholar] [CrossRef]
- Altan, A.; McCarthy, K.L.; Maskan, M. Evaluation of snack foods from barley–tomato pomace blends by extrusion processing. J. Food Eng. 2008, 84, 231–242. [Google Scholar] [CrossRef]
- Makowska, A.; Józefacki, A. Możliwość wykorzystania wybranych produktów odpadowych w produkcji wysokobłonnikowych wyrobów ekstrudowanych (Possibility of using of some waste by-products for producon of high fiber content extrudates). Apar. Badaw. I Dydakt. 2010, 15, 39–44. (In Polish) [Google Scholar]
- Makowska, A.; Polcyn, A.; Chudy, S.; Michniewicz, J. Application of oat, wheat and rye bran to modify nutritional properties, physical and sensory characteristics of extruded corn snacks. Acta Sci. Pol. Technol. Aliment. 2015, 14, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Wójtowicz, A.; Kolasa, A.; Mościcki, L. Influence of Buckwheat Addition on Physical Properties, Texture and Sensory Characteristics of Extruded Corn Snacks. Pol. J. Food Nutr. Sci. 2013, 63, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Kowalczewski, P.; Lewandowicz, G.; Makowska, A.; Olejnik, A.; Obuchowski, W. Charakterystyka ekstrudowanych przekąsek zbożowych zawierających sok z ziemniaka (Characterisation of the extruded cereal snacks containing potato juice)|Polona. Biul. IHAR 2012, 266, 319–329. (In Polish) [Google Scholar]
- Ačkar, Đ.; Jozinović, A.; Babić, J.; Miličević, B.; Panak Balentić, J.; Šubarić, D. Resolving the problem of poor expansion in corn extrudates enriched with food industry by-products. Innov. Food Sci. Emerg. Technol. 2018, 47, 517–524. [Google Scholar] [CrossRef]
- Drożdż, W.; Boruczkowska, H.; Boruczkowski, T.; Tomaszewska-Ciosk, E.; Zdybel, E. Use of blackcurrant and chokeberry press residue in snack products. Pol. J. Chem. Technol. 2019, 21, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Artz, W.E.; Warren, C.; Villota, R. Twin-screw extrusion modification of a corn fiber and corn starch extruded blend. J. Food Sci. Off. Publ. Inst. Food Technol. 1990, 55, 746–754. [Google Scholar] [CrossRef]
- Fernández-Gutiérrez, J.A.; San Martín-Martínez, E.; Martínez-Bustos, F.; Cruz-Orea, A. Physicochemical Properties of Casein-Starch Interaction Obtained by Extrusion Process. Starch Stärke 2004, 56, 190–198. [Google Scholar] [CrossRef]
- Nowak, G.; Wójtowicz, A.; Golian, M. Aronia Czarnoowocowa Jako Innowacyjny Dodatek Funkcjonalny do Ekstrudowanych Chrupek Kukurydzianych; Innowacje w Praktyce (Black Chokeberry as Innovative Functional Addition to Extruded Corn Snacks, Practical Innovation); Centrum Innowacji Naukowo-Edukacyjnych: Lublin, Poland, 2017; pp. 113–114. (In Polish) [Google Scholar]
- Drożdż, W.; Tomaszewska-Ciosk, E.; Zdybel, E.; Boruczkowska, H.; Boruczkowski, T.; Regiec, P. Effect of Apple and Rosehip Pomaces on Colour, Total Phenolics and Antioxidant Activity of Corn Extruded Snacks. Pol. J. Chem. Technol. 2014, 16, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Mokrzycki, W.S.; Tatol, M. Color difference ΔE: A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Karma, I.G.M. Determination and Measurement of Color Dissimilarity. Int. J. Eng. Emerg. Technol. 2020, 5, 67–71. [Google Scholar] [CrossRef]
- Yanniotis, S.; Petraki, A.; Soumpasi, E. Effect of pectin and wheat fibers on quality attributes of extruded cornstarch. J. Food Eng. 2007, 80, 594–599. [Google Scholar] [CrossRef]
Sample | Total Phenolic 1 mg Catechin/g dm | ABTS EC50 (mg/mL) | ABTS (TEAC) (mgTx/g dm) | Content of Dietary Fiber (g/100 g dm) | Chemical Composition (g/100 g dm) | ||||
---|---|---|---|---|---|---|---|---|---|
Soluble Fraction | Insoluble Fraction | Protein | Total Sugar | Fat | Ash | ||||
Control | 1.19 ± 0.37 a | 2.34 ± 0.11 f | 3.74 ± 0.11 a | 0.12 ± 0.00 a | 0.83 ± 0.01 a | 7.32 ± 0.03 c | 2.32 ± 0.12 a | 1.88 ± 0.17 b | 1.19 ± 0.00 a |
ECHB-05 | 3.76 ± 0.00 c | 1.00 ± 0.07 cd | 9.74 ± 0.23 f | 0.92 ± 0.11 b | 2.95 ± 0.05 b | 6.07 ± 0.15 a | 3.52 ± 0.07 c | 1.72 ± 0.08 b | 1.33 ± 0.12 ab |
ECHB-10 | 4.23 ± 0.13 d | 0.76 ± 0.01 c | 13.14 ± 0.10 h | 1.07 ± 0.07 b | 6.03 ± 0.07 e | 5.93 ± 0.70 a | 4.00 ± 0.14 d | 1.70 ± 0.03 b | 1.48 ± 0.03 b |
ECHB-20 | 13.44 ± 0.43 g | 0.52 ± 0.03 a | 18.14 ± 0.09 i | 1,96 ± 0.17 c | 8.83 ± 0.00 h | 5.75 ± 0.23 a | 4.37 ± 0.00 e | 1.68 ± 0.12 a | 1.63 ± 0.07 c |
ECH-05 | 2.10 ± 0.07 b | 1.45 ± 0.17 e | 4.74 ± 0.34 b | 0.78 ± 0.11 b | 2.75 ± 0.17 b | 6.42 ± 0.17 a | 2.87 ± 0.09 b | 1.58 ± 0.13 a | 1.20 ± 0.00 a |
ECH-10 | 3.48 ± 0.28 c | 1.21 ± 0.00 e | 7.14 ± 0.25 d | 0.98 ± 0.05 b | 5.07 ± 0.23 d | 6.01 ± 0.00 a | 3.12 ± 0.10 bc | 1.71 ± 0.00 b | 1.28 ± 0.02 ab |
ECH-20 | 4.97 ± 0.02 e | 0.86 ± 0.10 c | 11.74 ± 0.56 g | 1.22 ± 0.15 b | 6.90 ± 0.41 f | 5.94 ± 0.12 a | 4,01 ± 0.12 d | 1.70 ± 0.14 b | 1.32 ± 0.11 ab |
EBC-05 | 2.35 ± 0.17 b | 1.26 ± 0.07 e | 5.74 ± 0.24 c | 0.93 ± 0.23 b | 3.60 ± 0.00 c | 6.68 ± 0.10 b | 3.13 ± 0.14 bc | 1.90 ± 0.32 b | 1.23 ± 0.08 a |
EBC-10 | 3.38 ± 0.08 c | 1.17 ± 0.10 e | 7.94 ± 0.17 e | 1.03 ± 0.12 b | 6.28 ± 0.12 e | 6.47 ± 0.08 ab | 3.87 ± 0.11 d | 2.01 ± 0.15 b | 1.30 ± 0.00 ab |
EBC-20 | 5.93 ± 0.03 f | 0.62 ± 0.00 b | 17.76 ± 0.47 i | 1.79 ± 0 c | 8.53 ± 0.00 g | 6.07 ± 0.00 a | 4.12 ± 0.07 d | 2.37 ± 0.03 c | 1.42 ± 0.11 ab |
Sample | Total Phenolic 1 mg Catechin/g dm | Phenolic Acid (mg Ferulic Acid/g dm) | Flavonoids (mg Rutin/g dm) | Flavonols (mg Quercetin/g dm) | Anthocyanins (mg Cyanidin-3-Glucoside/g dm) |
---|---|---|---|---|---|
Control | 0.893 ± 0.032 a | 0.255 ± 0.000 a | 0.266 ± 0.021 a | 0.200 ± 0 a | 0.068 ± 0.011 a |
ECHB-05 | 3.550 ± 0.119 d | 0.324 ± 0.006 bc | 0.528 ± 0.014 e | 0.230 ± 0.002 b | 0.407 ± 0.00 d |
ECHB-10 | 4.197 ± 0.076 e | 0.379 ± 0.006 c | 0.891 ± 0.009 f | 0.258 ± 0.003 c | 0.457 ± 0.017 e |
ECHB-20 | 6.987 ± 0.374 g | 0.590 ± 0.032 d | 1.75 ± 0.057 g | 0.389 ± 0.022 d | 0.761 ± 0.034 f |
ECH-05 | 1.860 ± 0.114 b | 0.291 ± 0.009 b | 0.328 ± 0.017 b | 0.208 ± 0.006 b | 0.321 ± 0.012 b |
ECH-10 | 3.067 ± 0.139 c | 0.295 ± 0.012 b | 0.384 ± 0.004 c | 0.216 ± 0.008 b | 0.337 ± 0.00 b |
ECH-20 | 4.138 ± 0.145 e | 0.365 ± 0.015 c | 0.511 ± 0 e | 0.248 ± 0.008 bc | 0.368 ± 0.013 c |
EBC-05 | 2.002 ± 0.114 b | 0.298 ± 0.014 b | 0.447 ± 0.028 d | 0.231 ± 0.009 b | 0.364 ± 0.007 c |
EBC-10 | 3.061 ± 0.410 cd | 0.327 ± 0.026 bc | 0.503 ± 0.017 e | 0.261 ± 0.017 c | 0.380 ± 0.008 c |
EBC-20 | 4.500 ± 0.062 f | 0.375 ± 0.017 c | 0.907 ± 0.042 f | 0.287 ± 0.009 c | 0.430 ± 0.012 e |
Sample | Density [g/cm3] | Expansion Ratio [%] | WBC 1 [%] |
---|---|---|---|
Control | 0.064 ± 0.01 a | 4.24 ± 0.76 a | 4.38 ± 0.12 e |
ECHB-05 | 0.072 ± 0.01 a | 4.58 ± 0.25 a | 3.21 ± 0.09 c |
ECHB-10 | 0.118 ± 0.01 c | 4.23 ± 0.13 a | 2.84 ± 0.00 b |
ECHB-20 | 0.138 ± 0.00 d | 4.18 ± 0.15 a | 2.34 ± 0.07 a |
ECH-05 | 0.059 ± 0.02 a | 4.11 ± 0.18 a | 3.58 ± 0.00 d |
ECH-10 | 0.084 ± 0.00 ab | 4.29 ± 0.30 a | 2.99 ± 0.17 b |
ECH-20 | 0.110 ± 0.02 c | 4.12 ± 0.09 a | 2.57 ± 0.21 a |
EBC-05 | 0.073 ± 0.02 a | 3.89 ± 0.11 a | 3.37 ± 0.00 c |
EBC-10 | 0.087 ± 0.02 ab | 4.05 ± 0.25 a | 2.87 ± 0.03 b |
EBC-20 | 0.127 ± 0.02 d | 4.03 ± 0.23 a | 2.42 ± 0.05 a |
Sample | L* [-] (Black to White) | a* [-] (Green to Red) | B [-] (Blue to Yellow) | WI [-] | ΔE [-] |
---|---|---|---|---|---|
Control | 78.01 ± 0.12 g | 0.78 ± 0.27 a | 17.46 ± 0.18 h | 71.91 | - |
ECHB-05 | 53.43 ± 1.54 d | 9.11 ± 0.30 f | 10.25 ± 0.28 d | 51.45 | 26.94 |
ECHB-10 | 48.31 ± 0.47 c | 9.48 ± 0.13 g | 9.00 ± 0.15 c | 46.68 | 32.08 |
ECHB-20 | 30.20 ± 0.19 a | 10.57 ± 0.51 g | 7.12 ± 0.11 a | 29.05 | 49.89 |
ECH-05 | 66.16 ± 0.16 f | 5.19 ± 0.07 b | 14.46 ± 0.14 g | 62.84 | 13.00 |
ECH-10 | 60.62 ± 0.22 e | 6.64 ± 0.06 b | 13.7 ± 0.18 e | 57.78 | 18.73 |
ECH-20 | 50.31 ± 1.21 d | 7.12 ± 0.08 d | 12.10 ± 0.1 e | 48.36 | 28.92 |
EBC-05 | 60.73 ± 0.11 e | 7.39 ± 0.00 d | 9.90 ± 0.03 d | 58.83 | 19.99 |
EBC-10 | 53.20 ± 0.76 d | 8.52 ± 0.05 e | 8.57 ± 0.12 c | 51.66 | 27.47 |
EBC-20 | 45.20 ± 0.19 b | 9.57 ± 0.09 g | 7.32 ± 0.00 b | 43.89 | 35.45 |
Sample | Hardness [N] |
---|---|
Control | 36.37 ± 8.86 c |
ECHB-05 | 24.63 ± 4.8 b |
ECHB-10 | 14.32 ± 6.17 a |
ECH-05 | 29.24 ± 6.49 b |
ECH-10 | 30.58 ± 6.75 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumul, D.; Berski, W.; Zięba, T. The Influence of Fruit Pomaces on Nutritional, Pro-Health Value and Quality of Extruded Gluten-Free Snacks. Appl. Sci. 2023, 13, 4818. https://doi.org/10.3390/app13084818
Gumul D, Berski W, Zięba T. The Influence of Fruit Pomaces on Nutritional, Pro-Health Value and Quality of Extruded Gluten-Free Snacks. Applied Sciences. 2023; 13(8):4818. https://doi.org/10.3390/app13084818
Chicago/Turabian StyleGumul, Dorota, Wiktor Berski, and Tomasz Zięba. 2023. "The Influence of Fruit Pomaces on Nutritional, Pro-Health Value and Quality of Extruded Gluten-Free Snacks" Applied Sciences 13, no. 8: 4818. https://doi.org/10.3390/app13084818
APA StyleGumul, D., Berski, W., & Zięba, T. (2023). The Influence of Fruit Pomaces on Nutritional, Pro-Health Value and Quality of Extruded Gluten-Free Snacks. Applied Sciences, 13(8), 4818. https://doi.org/10.3390/app13084818