In Vitro Antibacterial Activity of Selected South African Plants against Drug-Resistant Staphylococci Isolated from Clinical Cases of Bovine Mastitis
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Collection and Identification
2.2. Storage and Grinding
2.3. Plant Extraction
2.4. Bacterial Isolates
2.5. Analysis of Extracts by Thin-Layer Chromatography (TLC)
2.6. Antibiotic Susceptibility Testing
2.7. Antibacterial Activity Assays
2.7.1. Qualitative Antibacterial Assay by TLC Bioautography
2.7.2. Quantitative Antibacterial Assay (Minimum Inhibitory Concentration Assay)
2.8. Cytotoxicity Assay
2.9. Statistical Analysis
3. Results
3.1. Plant Extract Yield
3.2. Bacterial Identification
3.3. Antibacterial Susceptibility
3.4. Thin-Layer Chromatography and Bioautography
3.5. Antibacterial Activity (Minimum Inhibitory Concentration)
3.6. Total Antibacterial Activity
3.7. Cytotoxicity and Selectivity Indices of Plant Extracts
4. Discussion
4.1. Plant Yield
4.2. Antibiogram
4.3. Antibacterial Activity
4.4. Cytotoxicity
4.5. Limitations of the Study and Future Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mekibib, B.; Furgasa, M.; Abunna, F.; Megersa, B.; Regassa, A. Bovine Mastitis: Prevalence, risk factors and major pathogens in dairy farms of Holeta Town, Central Ethiopia. Vet. World 2010, 3, 397–403. [Google Scholar] [CrossRef]
- Kurjogi, M.M.; Kaliwal, B.B. Epidemiology of Bovine Mastitis in Cows of Dharwad District. Int. Sch. Res. Not. 2014, 2014, 968076. [Google Scholar] [CrossRef]
- Ngu Ngwa, V.; Awah-Ndukum, J.; Cuteri, V.; Tanyi Kingsley, M.; Souaibou, A.; Laouane, F.; Kofa, H.; Attili, A.R. Prevalence study on bovine mastitis in the Adamawa Region of Cameroon. Large Anim. Rev. 2018, 24, 21–29. [Google Scholar]
- Ibrahim, S.S.; Ghanem, H.M. Factors affecting mastitis incidence and its economic losses under Egyptian conditions. Alex. J. Vet. Sci. 2019, 60, 17–22. [Google Scholar]
- Gomes, F.; Henriques, M. Control of Bovine Mastitis: Old and Recent Therapeutic Approaches. Curr. Microbiol. 2016, 72, 377–382. [Google Scholar] [CrossRef]
- Zhao, X.; Lacasse, P. Mammary tissue damage during bovine mastitis: Causes and control. J. Anim. Sci. 2008, 86, 57–65. [Google Scholar] [CrossRef]
- Petzer, I.-M.; Karzis, J.; Watermeyer, J.C.; Van der Schans, T.J.; Van Reenen, R. Present trends in udder health and emerging mastitogenic pathogens in South African dairy herds. J. S. Afr. Vet. Assoc. 2009, 80, 17–22. [Google Scholar] [CrossRef]
- Perini, S.; Piccoli, R.H.; Nunes, C.A.; Bruhn, F.R.P.; Custódio, D.A.C.; Costa, G.M. Antimicrobial activity of essential oils against pathogens isolated from bovine mastitis. J. Nat. Prod. Plant Resour. 2014, 4, 6–15. [Google Scholar]
- Tiwari, J.G.; Babra, C.; Tiwari, H.K.; Williams, V.; DeWet, S.; Gibson, J.; Paxman, A.; Morgan, E.; Costantino, P.; Sunagar, R.; et al. Trends in therapeutic and prevention strategies for management of bovine mastitis: An overview. J. Vaccines Vaccin. 2013, 4, 1000176.1–1000176.11. [Google Scholar] [CrossRef]
- Rosenbach, A.J.F. Mikro-Organismen bei den Wund-Infections-Krankheiten des Menschen; JF Bergmann: Wiesbaden, Germany, 1884. [Google Scholar]
- Bradley, A.J. Bovine mastitis: An evolving disease. Vet. J. 2002, 164, 116–128. [Google Scholar] [CrossRef]
- Du Preez, J.H. Bovine mastitis therapy and why it fails: Continuing education. J. S. Afr. Vet. Assoc. 2000, 71, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Gruet, P.; Maincent, P.; Berthelot, X.; Kaltsatos, V. Bovine mastitis and intramammary drug delivery: Review and perspectives. Adv. Drug Deliv. Rev. 2001, 50, 245–259. [Google Scholar] [CrossRef]
- Phophi, L.; Petzer, I.-M.; Qekwana, D.N. Antimicrobial resistance patterns and biofilm formation of coagulase-negative Staphylococcus species isolated from subclinical mastitis cow milk samples submitted to the Onderstepoort Milk Laboratory. BMC Vet. Res. 2019, 15, 420. [Google Scholar] [CrossRef]
- Makunga, N.P.; Philander, L.E.; Smith, M. Current perspectives on an emerging formal natural products sector in South Africa. J. Ethnopharmacol. 2008, 119, 365–367. [Google Scholar] [CrossRef]
- Cock, I.E.; Van Vuuren, S.F. The traditional use of southern African medicinal plants for the treatment of bacterial respiratory diseases: A review of the ethnobotany and scientific evaluations. J. Ethnopharmacol. 2020, 263, 113204. [Google Scholar] [CrossRef]
- Gurib-Fakim, A.; Brendler, T.; Philips, L.D.; Eloff, J.N. Green Gold Success Stories Using Southern African Medicinal Plant Species; AAMPS Publishing: Tshwane, South Africa, 2010. [Google Scholar]
- Eloff, J.N.; McGaw, L.J. Plant extracts used to manage bacterial, fungal and parasitic infections in southern Africa. In Modern Phytomedicine: Turning Medicinal Plants into Drugs; Ahmad, I., Ed.; Wiley-VCH: Weinheim, Germany, 2006; pp. 97–121. [Google Scholar]
- Eloff, J.N. Which extractant should be used for the screening and isolation of antimicrobial components from plants? J. Ethnopharmacol. 1998, 60, 1–8. [Google Scholar] [CrossRef]
- Eloff, J.N. Antibacterial activity of Marula (Sclerocarya birrea (A. rich.) Hochst. subsp. caffra (Sond.) Kokwaro) (Anacardiaceae) bark and leaves. J. Ethnopharmacol. 2001, 76, 305–308. [Google Scholar]
- Markey, B.; Leonard, F.; Archambault, M.; Cullinane, A.; Maguire, D. Clinical Veterinary Microbiology e-Book; Mosby Ltd.: St. Louis, MI, USA, 2013. [Google Scholar]
- Nonnemann, B.; Lyhs, U.; Svennesen, L.; Kristensen, K.A.; Klaas, I.C.; Pedersen, K. Bovine mastitis bacteria resolved by MALDI-TOF mass spectrometry. J. Dairy Sci. 2019, 102, 2515–2524. [Google Scholar] [CrossRef]
- Kotzé, M.; Eloff, J.N. Extraction of antibacterial compounds from Combretum microphyllum (Combretaceae). S. Afr. J. Bot. 2002, 68, 62–67. [Google Scholar] [CrossRef]
- Clinical Laboratory Standards Institute. Laboratory Standards Institute Antimicrobial Susceptibility Testing Standards M02-A12, M07-A10, and M11-A8; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Margiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G. Multidrug-resistant, extensively drug-resistant, and pan drug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Begue, W.J.; Kline, R.M. The use of tetrazolium salts in bioautographic procedures. J. Chromatogr. 1972, 64, 182. [Google Scholar] [CrossRef]
- Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef]
- Eloff, J.N.; Masoko, P.; Picard, J. Resistance of animal fungal pathogens to solvents used in bioassays. S. Afr. J. Bot. 2007, 73, 667–669. [Google Scholar] [CrossRef]
- Eloff, J.N. On expressing the antibacterial activity of plant extracts: A small first step in applying scientific knowledge to rural primary health care. S. Afr. J. Sci. 2000, 96, 116–118. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Kuete, V. Potential of Cameroonian plants and derived products against microbial infections: A review. Planta Med. 2010, 76, 1479–1491. [Google Scholar] [CrossRef] [PubMed]
- Eloff, J.N. Quantification the bioactivity of plant extracts during screening and bioassay-guided fractionation. Phytomedicine 2004, 11, 370–371. [Google Scholar] [CrossRef]
- Panda, S.K.; Padhi, L.P.; Mohanty, G. Antibacterial activities and phytochemical analysis of Cassia fistula (Linn.) leaf. J. Adv. Pharm. Technol. Res. 2011, 2, 62–67. [Google Scholar] [CrossRef]
- Gundidza, M.; Gweru, N.; Mmbengwa, V.; Ramalivhana, N.J.; Magwa, Z.; Samie, A. Phytoconstituents and biological activities of essential oil from Rhus lancea L. F. Afr. J. Biotechnol. 2008, 7, 2787–2789. [Google Scholar] [CrossRef]
- Vambe, M.; Aremu, A.O.; Chukwujekwu, J.C.; Finnie, J.F.; Van Staden, J. Antibacterial screening, synergy studies and phenolic content of seven South African medicinal plants against drug-sensitive and -resistant microbial strains. S. Afr. J. Bot. 2018, 114, 250–259. [Google Scholar] [CrossRef]
- Fanyana, M.M.; Ikechukwu, P.E.; Tshifhiwa, M.; Ezekiel, D.; Michael, J.K. Phytochemical Profiling, Antioxidant and Antibacterial Activities of Leaf Extracts from Rhus leptodictya. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 1090–1099. [Google Scholar]
- Shai, L.J.; McGaw, L.J.; Masoko, P.; Eloff, J.N. Antifungal and antibacterial activity of seven traditionally used South African plant species active against Candida albicans. S. Afr. J. Bot. 2008, 74, 677–684. [Google Scholar] [CrossRef]
- Okmen, G.; Cantekin, Z.; Alam, M.I.; Turkcan, O.; Ergun, Y. Antibacterial and antioxidant activities of Liquidambar orientalis Mill. various extracts against bacterial pathogens causing mastitis. Turk. J. Agric.-Food Sci. Technol. 2017, 5, 883–887. [Google Scholar]
- Piotr, S.; Magdalena, Z.; Joanna, P.; Barbara, K.; Sławomir, M. Essential oils as potential anti-staphylococcal agents. Acta Vet. -Beogr. 2018, 68, 95–107. [Google Scholar] [CrossRef]
- Sserunkuma, P.; McGaw, L.J.; Nsahlai, I.V.; Van Staden, J. Selected southern African medicinal plants with low cytotoxicity and good activity against bovine mastitis pathogens. S. Afr. J. Bot. 2017, 111, 242–247. [Google Scholar] [CrossRef]
- Tshidzumba, P.W.; Masevhe, N.A.; Mulaudzi, R.B. An Inventory and Pharmacological Evaluation of Medicinal Plants Used as Anti-Diabetes and Anti-Arthritis in Vhembe District Municipality, Limpopo Province, RSA. Master’s Thesis, University of Venda, Thohoyandou, South Africa, 2015. [Google Scholar]
- Ahmed, A.S.; McGaw, L.J.; Moodley, N.; Naidoo, V.; Eloff, J.N. Cytotoxic, antimicrobial, antioxidant, antilipoxygenase activities and phenolic composition of Ozoroa and Searsia species (Anacardiaceae) used in South African traditional medicine for treating diarrhoea. S. Afr. J. Bot. 2014, 95, 9–18. [Google Scholar] [CrossRef]
- McGaw, L.J.; Van der Merwe, D.; Eloff, J.N. In vitro anthelmintic, antibacterial and cytotoxic effects of extracts from plants used in South African ethnoveterinary medicine. Vet. J. 2007, 173, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Desta, Z.Y.; Sewald, N.; Majinda, R.R.T. Cytotoxic flavonoids from Erythrina caffra Thunb. Bull. Chem. Soc. Ethiop. 2016, 30, 427–435. [Google Scholar] [CrossRef]
- Mwangomo, D.T.; Moshi, M.J.; Magadula, J.J. Antimicrobial activity and phytochemical screening of Antidesma venosum root and stem bark ethanolic extracts. Int. J. Res. Phytochem. Pharmacol. 2012, 2, 90–95. [Google Scholar]
- Dzoyem, J.P.; Aro, A.O.; McGaw, L.J.; Eloff, J.N. Antimycobacterial activity against different pathogens and selectivity index of fourteen medicinal plants used in southern Africa to treat tuberculosis and respiratory ailments. S. Afr. J. Bot. 2016, 102, 70–74. [Google Scholar] [CrossRef]
Family | Plant Species | Accession Numbers |
---|---|---|
Anacardiaceae | Searsia leptodictya (Diels) T.S.Yi, A.J.Mill. & J.Wen | PRU 128116 |
Anacardiaceae | Searsia lancea (L.f.) F.A.Barkley | PRU 128113 |
Celastraceae | Elaeodendron croceum (Thunb.) DC. | PRE 1004265 |
Celastraceae | Pleurostylia capensis (Turcz.) Loes. | PRE 1004260 |
Fabaceae | Erythrina caffra Thunb. | PRU 128360 |
Fabaceae | Indigofera frutescens L.f. | PRU 128111 |
Meliacae | Trichilia emetica Vahl | PRU 128115 |
Phyllanthaceae | Antidesma venosum E.Mey. ex Tul. | PRU 128361 |
Rhamnaceae | Ziziphus mucronata Willd. ssp. mucronata | PRU 128112 |
Plants | % Acetone Extract Yield (g/g) | % Ethanol Extract Yield (g/g) |
---|---|---|
Antidesma venosum | 1.92 | 3.28 |
Elaeodendron croceum | 4.96 | 8.12 |
Erythrina caffra | 5.35 | 2.68 |
Indigofera frutescens | 1.68 | 6.87 |
Pleurostylia capensis | 5.11 | 6.80 |
Searsia lancea | 5.49 | 10.75 |
Searsia leptodictya | 1.98 | 4.00 |
Trichilia emetica | 2.79 | 6.99 |
Ziziphus mucronata | 2.80 | 6.04 |
Strain Codes | Species Names |
---|---|
ATCC 29213 | Staphylococcus aureus |
STA1 | Staphylococcus aureus |
STA2 | Staphylococcus aureus |
STA3 | Staphylococcus aureus |
STA4 | Staphylococcus aureus |
STA5 | Staphylococcus aureus |
STA6 | Staphylococcus aureus |
STA7 | Staphylococcus aureus |
STA8 | Staphylococcus aureus |
NAS A | Staphylococcus chromogenes |
NAS B | Staphylococcus haemolyticus |
NAS C | Staphylococcus chromogenes |
NAS D | Staphylococcus chromogenes |
Species | Strains | Resistance Pattern | No. of Resistance |
---|---|---|---|
S. aureus | STA1 | AK, CT, CN | 3 |
STA2 | AK, CT, CN | 3 | |
STA3 | CT, CN | 2 | |
STA4 | AK, CT | 2 | |
STA5 | AK, CT, CN | 3 | |
STA6 | AK, CT, CN | 3 | |
STA7 | AK, CT, CN | 3 | |
STA8 | AK, CT, CN | 3 | |
ATCC (29213) (S. aureus) | CT | 1 | |
NAS | NAS A | CT, CN | 2 |
NAS B | CT, C, AMC | 3 | |
NAS C | AK, CT, CN | 3 | |
NAS D | CT | 1 |
Mean ± SEM | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plants | STA1 | STA2 | STA3 | STA4 | STA5 | STA6 | STA7 | STA8 | NAS A | NAS B | NAS C | NAS D | ATCC |
Pleurostylia capensis | 0.23 ± 0.09 | 0.31 ± 0.00 | 0.31 ± 0.00 | 0.23 ± 0.09 | 0.31 ± 0.00 | 0.23 ± 0.09 | 0.18 ± 0.15 | 0.39 ± 0.26 | 0.23 ± 0.09 | 0.23 ± 0.09 | 0.23 ± 0.09 | 0.73 ± 0.43 | 0.47 ± 0.17 |
Antidesma venosum | 0.12 ± 0.04 | 0.14 ± 0.03 | 0.09 ± 0.07 | 0.10 ± 0.06 | 0.12 ± 0.04 | 0.27 ± 0.30 | 0.20 ± 0.13 | 0.64 ± 0.66 | 0.20 ± 0.13 | 0.16 ± 0.00 | 0.10 ± 0.06 | 0.18 ± 0.15 | 0.12 ± 0.04 |
Searsia leptodictya | 0.31 ± 0.00 | 0.20 ± 0.13 | 0.23 ± 0.09 | 0.12 ± 0.04 | 0.16 ± 0.00 | 0.29 ± 0.06 | 0.23 ± 0.09 | 0.31 ± 0.00 | 0.23 ± 0.09 | 0.23 ± 0.09 | 0.12 ± 0.04 | 0.29 ± 0.06 | 0.16 ± 0.00 |
Searsia lancea | 0.05 ± 0.02 | 0.04 ± 0.01 | 0.01 ± 0.00 | 0.04 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.00 | 0.03 ± 0.01 | 0.02 ± 0.00 | 0.05 ± 0.01 | 0.02 ± 0.01 | 0.04 ± 0.02 | 0.03 ± 0.01 | 0.07 ± 0.02 |
Indigofera frutescens | 0.16 ± 0.00 | 0.37 ± 0.13 | 0.09 ± 0.03 | 0.05 ± 0.03 | 0.42 ± 0.16 | 0.10 ± 0.04 | 0.10 ± 0.06 | 0.12 ± 0.04 | 0.10 ± 0.04 | 0.14 ± 0.03 | 0.12 ± 0.04 | 0.12 ± 0.04 | 0.16 ± 0.00 |
Erythrina caffra | 0.47 ± 0.17 | 0.47 ± 0.17 | 0.31 ± 0.00 | 0.31 ± 0.00 | 0.63 ± 0.00 | 0.39 ± 0.26 | 0.42 ± 0.16 | 0.37 ± 0.13 | 0.63 ± 0.00 | 0.39 ± 0.26 | 0.73 ± 0.57 | 0.31 ± 0.00 | 0.16 ± 0.00 |
Elaeodendron croceum | 0.63 ± 0.00 | 0.47 ± 0.17 | 0.31 ± 0.00 | 0.47 ± 0.17 | 0.73 ± 0.26 | 0.47 ± 0.17 | 0.31 ± 0.00 | 0.63 ± 0.00 | 0.31 ± 0.00 | 0.18 ± 0.06 | 0.12 ± 0.04 | 0.39 ± 0.26 | 0.47 ± 0.17 |
Ziziphus mucronata | 0.78 ± 0.51 | 0.94 ± 0.34 | 0.23 ± 0.09 | 0.47 ± 0.17 | 0.47 ± 0.17 | 0.31 ± 0.00 | 0.26 ± 0.21 | 0.08 ± 0.00 | 0.47 ± 0.17 | 0.63 ± 0.00 | 0.78 ± 0.51 | 0.47 ± 0.17 | 0.63 ± 0.00 |
Trichilia emetica | 0.47 ± 0.17 | 1.41 ± 1.20 | 1.29 ± 1.33 | 0.23 ± 0.09 | 0.23 ± 0.09 | 0.63 ± 0.00 | 0.35 ± 0.30 | 0.20 ± 0.13 | 0.21 ± 0.12 | 0.39 ± 0.26 | 0.39 ± 0.26 | 0.31 ± 0.00 | 0.31 ± 0.00 |
Gentamicin (µg/mL) | 14.6 | 4.7 | 0.8 | 0.2 | 9.1 | >25.0 | >25.0 | >25.0 | >25.0 | 4.0 | 0.7 | >25.0 | <0.2 |
Mean MIC (mg/mL) ± SEM | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plants | STA1 | STA2 | STA3 | STA4 | STA5 | STA6 | STA7 | STA8 | NAS A | NAS B | NAS C | NAS D | ATCC |
Pleurostylia capensis | 0.78 ± 0.51 | 0.63 ± 0.00 | 0.57 ± 0.13 | 0.42 ± 0.16 | 0.63 ± 0.00 | 0.63 ± 0.00 | 0.63 ± 0.00 | 0.47 ± 0.17 | 0.63 ± 0.00 | 0.57 ± 0.13 | 0.31 ± 0.00 | 0.57 ± 0.13 | 0.94 ± 0.34 |
Antidesma venosum | 0.47 ± 0.17 | 0.16 ± 0.00 | 0.31 ± 0.00 | 0.31 ± 0.00 | 0.47 ± 0.17 | 0.31 ± 0.00 | 0.31 ± 0.00 | 0.31 ± 0.00 | 0.34 ± 0.15 | 0.31 ± 0.00 | 0.16 ± 0.00 | 0.31 ± 0.00 | 0.31 ± 0.00 |
Searsia leptodictya | 0.63 ± 0.00 | 0.63 ± 0.00 | 0.57 ± 0.13 | 0.47 ± 0.17 | 0.63 ± 0.00 | 0.63 ± 0.00 | 0.94 ± 0.34 | 0.31 ± 0.00 | 0.47 ± 0.17 | 0.31 ± 0.00 | 0.31 ± 0.00 | 0.63 ± 0.00 | 0.68 ± 0.46 |
Searsia lancea | 0.20 ± 0.13 | 0.13 ± 0.04 | 0.13 ± 0.04 | 0.18 ± 0.06 | 0.16 ± 0.12 | 0.14 ± 0.09 | 0.13 ± 0.04 | 0.13 ± 0.04 | 0.14 ± 0.03 | 0.14 ± 0.03 | 0.08 ± 0.00 | 0.18 ± 0.06 | 0.16 ± 0.00 |
Indigofera frutescens | 0.47 ± 0.17 | 0.31 ± 0.00 | 0.52 ± 0.16 | 0.63 ± 0.00 | 0.63 ± 0.00 | 0.52 ± 0.16 | 0.47 ± 0.17 | 0.37 ± 0.13 | 0.31 ± 0.00 | 0.47 ± 0.17 | 0.26 ± 0.08 | 0.63 ± 0.00 | 0.63 ± 0.00 |
Erythrina caffra | 0.12 ± 0.04 | 0.12 ± 0.04 | 0.12 ± 0.04 | 0.08 ± 0.00 | 0.12 ± 0.04 | 0.12 ± 0.04 | 0.12 ± 0.04 | 0.47 ± 0.17 | 0.16 ± 0.00 | 0.26 ± 0.08 | 0.31 ± 0.00 | 0.16 ± 0.00 | 0.31 ± 0.00 |
Elaeodendron croceum | 0.44 ± 0.21 | 0.31 ± 0.00 | 0.31 ± 0.00 | 0.57 ± 0.13 | 0.31 ± 0.00 | 0.47 ± 0.17 | 0.47 ± 0.17 | 0.42 ± 0.16 | 0.37 ± 0.13 | 0.31 ± 0.00 | 0.23 ± 0.09 | 0.31 ± 0.00 | 0.31 ± 0.00 |
Ziziphus mucronata | 0.47 ± 0.17 | 0.78 ± 0.51 | 0.42 ± 0.16 | 0.63 ± 0.00 | 0.78 ± 0.51 | 0.73 ± 0.26 | 1.15 ± 0.81 | 0.63 ± 0.00 | 0.73 ± 0.26 | 0.73 ± 0.26 | 0.63 ± 0.00 | 0.47 ± 0.17 | 0.83 ± 0.47 |
Trichilia emetica | 0.52 ± 0.16 | 0.63 ± 0.00 | 0.94 ± 0.34 | 0.73 ± 0.26 | 0.63 ± 0.00 | 0.94 ± 0.34 | 0.63 ± 0.00 | 0.63 ± 0.00 | 0.57 ± 0.13 | 0.94 ± 0.34 | 0.47 ± 0.17 | 0.63 ± 0.00 | 0.83 ± 0.32 |
Gentamicin (µg/mL) | 14.6 | 4.7 | 20.8 | 0.2 | 9.1 | >25.0 | >25.0 | >25.0 | >25.0 | 4.0 | 0.7 | >25.0 | <0.2 |
MIC Range and Average MIC of the Extracts (mg/mL) ± SEM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Plants | MIC Range | STA Strains | NAS Strains | STA and NAS Strains * | ATCC Strain | |||||
Solvents | Acetone | Ethanol | Acetone | Ethanol | Acetone | Ethanol | Acetone | Ethanol | Acetone | Ethanol |
Pleurostylia capensis | 0.18–0.73 | 0.31–0.78 | 0.25 ± 0.06 | 0.59 ± 0.11 | 0.38 ± 0.24 | 0.52 ± 0.14 | 0.29 ± 0.15 | 0.57 ± 0.12 | 0.47 ± 0.17 | 0.94 ± 0.34 |
Antidesma venosum | 0.09–0.64 | 0.16–0.47 | 0.15 ± 0.06 | 0.33 ± 0.22 | 0.14 ± 0.05 | 0.28 ± 0.08 | 0.15 ± 0.06 | 0.31 ± 0.09 | 0.12 ± 0.04 | 0.31 ± 0.00 |
Searsia leptodictya | 0.12–0.31 | 0.31–0.94 | 0.22 ± 0.06 | 0.60 ± 0.33 | 0.22 ± 0.07 | 0.43 ± 0.15 | 0.22 ± 0.06 | 0.54 ± 0.18 | 0.16 ± 0.00 | 0.68 ± 0.46 |
Searsia lancea | 0.01–0.05 | 0.08–0.20 | 0.03 ± 0.01 | 0.15 ± 0.44 | 0.04 ± 0.02 | 0.14 ± 0.04 | 0.03 ± 0.01 | 0.15 ± 0.03 | 0.07 ± 0.02 | 0.16 ± 0.00 |
Indigofera frutescens | 0.05–0.37 | 0.26–0.63 | 0.17 ± 0.14 | 0.49 ± 0.55 | 0.11 ± 0.01 | 0.42 ± 0.16 | 0.15 ± 0.12 | 0.46 ± 0.13 | 0.16 ± 0.00 | 0.63 ± 0.00 |
Erythrina caffra | 0.31–0.73 | 0.08–0.47 | 0.43 ± 0.10 | 0.16 ± 0.66 | 0.50 ± 0.21 | 0.22 ± 0.08 | 0.45 ± 0.14 | 0.18 ± 0.11 | 0.16 ± 0.00 | 0.31 ± 0.00 |
Elaeodendron croceum | 0.12–0.73 | 0.23–0.47 | 0.46 ± 0.15 | 0.41 ± 0.77 | 0.28 ± 0.12 | 0.31 ± 0.05 | 0.40 ± 0.16 | 0.38 ± 0.10 | 0.47 ± 0.17 | 0.31 ± 0.00 |
Ziziphus mucronata | 0.23–0.94 | 0.42–1.15 | 0.47 ± 0.26 | 0.70 ± 0.88 | 0.49 ± 0.22 | 0.64 ± 0.12 | 0.47 ± 0.24 | 0.68 ± 0.19 | 0.63 ± 0.00 | 0.83 ± 0.47 |
Trichilia emetica | 0.21–1.41 | 0.47–0.94 | 0.56 ± 0.50 | 0.70 ± 0.99 | 0.55 ± 0.50 | 0.65 ± 0.20 | 0.56 ± 0.47 | 0.69 ± 0.16 | 0.31 ± 0.00 | 0.83 ± 0.32 |
Plants | % Yield | S. aureus Isolates | S. chromogenes Isolates | S. haemolyticus Isolates | S. aureus ATCC Strain | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean MIC (mg/mL) | Total Activity | Mean MIC (mg/mL) | Total Activity | Mean MIC (mg/mL) | Total Activity | Mean MIC (mg/mL) | Total Activity | |||||||||||
Ace | Eth | Ace | Eth | Ace | Eth | Ace | Eth | Ace | Eth | Ace | Eth | Ace | Eth | Ace | Eth | Ace | Eth | |
Pleurostylia capensis | 51.10 | 67.98 | 0.25 ± 0.06 | 0.59 ± 0.11 | 204.96 | 114.71 | 0.40 ± 0.29 | 0.50 ± 0.17 | 127.93 | 134.96 | 0.23 ± 0.09 | 0.57 ± 0.13 | 217.91 | 118.63 | 0.47 ± 0.17 | 0.94 ± 0.34 | 108.96 | 72.51 |
Antidesma venosum | 19.20 | 32.75 | 0.15 ± 0.06 | 0.33 ± 0.22 | 125.49 | 98.53 | 0.16 ± 0.05 | 0.27 ± 0.17 | 122.81 | 121.62 | 0.10 ± 0.06 | 0.31 ± 0.00 | 123.08 | 104.63 | 0.12 ± 0.04 | 0.31 ± 0.00 | 164.10 | 104.63 |
Searsia leptodictya | 19.75 | 39.95 | 0.22 ± 0.06 | 0.60 ± 0.33 | 89.17 | 66.69 | 0.21 ± 0.09 | 0.47 ± 0.17 | 92.82 | 85.18 | 0.12 ± 0.04 | 0.31 ± 0.00 | 84.22 | 127.64 | 0.16 ± 0.00 | 0.68 ± 0.46 | 126.60 | 58.98 |
Searsia lancea | 54.88 | 107.53 | 0.03 ± 0.01 | 0.15 ± 0.44 | 1964.02 | 714.65 | 0.04 ± 0.01 | 0.13 ± 0.17 | 1291.18 | 800.10 | 0.04 ± 0.01 | 0.14 ± 0.03 | 2385.87 | 751.92 | 0.07 ± 0.02 | 0.16 ± 0.00 | 767.48 | 689.26 |
Indigofera frutescens | 16.78 | 68.73 | 0.17 ± 0.14 | 0.49 ± 0.55 | 97.46 | 140.69 | 0.11 ± 0.01 | 0.40 ± 0.17 | 148.89 | 172.00 | 0.05 ± 0.03 | 0.47 ± 0.17 | 117.31 | 146.54 | 0.16 ± 0.00 | 0.63 ± 0.00 | 107.53 | 109.96 |
Erythrina caffra | 53.48 | 26.83 | 0.43 ± 0.10 | 0.16 ± 0.66 | 125.33 | 171.82 | 0.56 ± 0.22 | 0.21 ± 0.17 | 96.23 | 128.76 | 0.31 ± 0.00 | 0.26 ± 0.08 | 136.94 | 102.91 | 0.16 ± 0.00 | 0.31 ± 0.00 | 342.79 | 85.70 |
Elaeodendron croceum | 49.60 | 81.18 | 0.46 ± 0.15 | 0.41 ± 0.77 | 107.24 | 196.20 | 0.27 ± 0.14 | 0.30 ± 0.17 | 181.35 | 266.88 | 0.47 ± 0.17 | 0.31 ± 0.00 | 272.40 | 259.35 | 0.47 ± 0.17 | 0.31 ± 0.00 | 105.76 | 259.35 |
Ziziphus mucronata | 27.98 | 60.38 | 0.47 ± 0.26 | 0.70 ± 0.88 | 60.07 | 86.65 | 0.57 ± 0.18 | 0.61 ± 0.17 | 48.81 | 99.35 | 0.47 ± 0.17 | 0.73 ± 0.26 | 44.76 | 82.80 | 0.63 ± 0.00 | 0.83 ± 0.47 | 44.76 | 72.44 |
Trichilia emetica | 27.90 | 69.90 | 0.56 ± 0.50 | 0.70 ± 0.99 | 49.68 | 99.41 | 0.30 ± 0.09 | 0.56 ± 0.17 | 91.78 | 125.79 | 0.23 ± 0.09 | 0.94 ± 0.34 | 71.45 | 74.56 | 0.31 ± 0.00 | 0.83 ± 0.32 | 89.14 | 83.88 |
Selectivity Index of Selected Plant Extracts | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plants | Extractant | LC50 (mg/mL) | Mean SI | STA1 | STA2 | STA3 | STA4 | STA5 | STA6 | STA7 | STA8 | NAS A | NAS B | NAS C | NAS D | STA ATCC |
Antidesma venosum | Ace | 0.08 ± 0.00 | 0.65 ± 0.15 | 0.68 | 0.56 | 0.91 | 0.82 | 0.68 | 0.30 | 0.68 | 0.68 | 0.68 | 0.68 | 0.68 | 0.45 | 0.67 |
Antidesma venosum | Eth | 0.43 ± 0.16 | 1.24 ± 0.51 | 0.92 | 2.76 | 1.37 | 1.37 | 0.92 | 1.37 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 1.37 | 1.39 |
Searsia lancea | Ace | 0.15 ± 0.02 | 4.69 ± 0.89 | 2.88 | 4.13 | 10.27 | 4.13 | 8.11 | 10.23 | 2.88 | 2.88 | 2.88 | 2.88 | 2.88 | 4.71 | 2.14 |
Searsia lancea | Eth | 0.79 ± 0.09 | 4.64 ± 0.78 | 4.04 | 6.08 | 6.08 | 4.34 | 4.85 | 5.52 | 4.04 | 4.04 | 4.04 | 4.04 | 4.04 | 4.34 | 4.94 |
Erythrina caffra | Ace | ˃1 | 2.69 ± 1.18 | 2.13 | 2.13 | 3.19 | 3.19 | 1.60 | 2.56 | 2.13 | 2.13 | 2.13 | 2.13 | 2.13 | 3.19 | 6.25 |
Erythrina caffra | Eth | ˃1 | 8.30 ± 2.05 | 8.55 | 8.55 | 8.55 | 12.82 | 8.55 | 8.55 | 8.55 | 8.55 | 8.55 | 8.55 | 8.55 | 6.41 | 3.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinboye, A.O.; Famuyide, I.M.; Petzer, I.-M.; McGaw, L.J. In Vitro Antibacterial Activity of Selected South African Plants against Drug-Resistant Staphylococci Isolated from Clinical Cases of Bovine Mastitis. Appl. Sci. 2023, 13, 5560. https://doi.org/10.3390/app13095560
Akinboye AO, Famuyide IM, Petzer I-M, McGaw LJ. In Vitro Antibacterial Activity of Selected South African Plants against Drug-Resistant Staphylococci Isolated from Clinical Cases of Bovine Mastitis. Applied Sciences. 2023; 13(9):5560. https://doi.org/10.3390/app13095560
Chicago/Turabian StyleAkinboye, Ayodele O., Ibukun M. Famuyide, Inge-Marie Petzer, and Lyndy J. McGaw. 2023. "In Vitro Antibacterial Activity of Selected South African Plants against Drug-Resistant Staphylococci Isolated from Clinical Cases of Bovine Mastitis" Applied Sciences 13, no. 9: 5560. https://doi.org/10.3390/app13095560
APA StyleAkinboye, A. O., Famuyide, I. M., Petzer, I. -M., & McGaw, L. J. (2023). In Vitro Antibacterial Activity of Selected South African Plants against Drug-Resistant Staphylococci Isolated from Clinical Cases of Bovine Mastitis. Applied Sciences, 13(9), 5560. https://doi.org/10.3390/app13095560