Aluminum-Based Plasmonic Photodetector for Sensing Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of PPPDs on Si Substrates
2.2. Morphological Characterization
2.3. Optical Characterization
3. Simulation of the Proposed Structure and Parameter Optimization
3.1. Description of the Geometry of the Structure
3.2. Parameter Estimation from Dispersion Curves
3.3. Theoretical Method Descriptions
3.4. Theoretical Framework for Parameter Optimization Problem
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83–91. [Google Scholar] [CrossRef]
- Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef] [PubMed]
- Sipe, J.; Becher, J. Surface-plasmon-assisted photoemission. JOSA 1981, 71, 1286–1288. [Google Scholar] [CrossRef]
- Tamm, I.; Dawson, P.; Sellai, A.; Pate, M.; Grey, R.; Hill, G. Analysis of surface plasmon polariton enhancement in photodetection by Al—GaAs Schottky diodes. Solid-State Electron. 1993, 36, 1417–1427. [Google Scholar] [CrossRef]
- Guo, J.; Wu, Z.; Li, Y.; Zhao, Y. Design of plasmonic photodetector with high absorptance and nano-scale active regions. Opt. Express 2016, 24, 18229–18243. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Xu, N.; Wang, E.; Gen, S.; Zhu, H.; Liu, C.; Cao, J. Nanogratings fabricated by wet etching assisted femtosecond laser modification of silicon for surface plasmon resonance sensing. Appl. Surf. Sci. 2022, 603, 154446. [Google Scholar] [CrossRef]
- Alavirad, M.; Roy, L.; Berini, P. Surface plasmon enhanced photodetectors based on internal photoemission. J. Photonics Energy 2016, 6, 042511. [Google Scholar] [CrossRef]
- Brueck, S.; Diadiuk, V.; Jones, T.; Lenth, W. Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves. Appl. Phys. Lett. 1985, 46, 915–917. [Google Scholar] [CrossRef]
- Gosciniak, J.; Atar, F.B.; Corbett, B.; Rasras, M. Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride. Sci. Rep. 2019, 9, 6048. [Google Scholar] [CrossRef]
- Sharma, A.K.; Pandey, A.K. Au grating on SiC substrate: Simulation of high performance plasmonic Schottky barrier photodetector in visible and NIR regions. J. Phys. D Appl. Phys. 2020, 53, 175103. [Google Scholar] [CrossRef]
- Saito, Y.; Yamamoto, Y.; Kan, T.; Tsukagoshi, T.; Noda, K.; Shimoyama, I. Electrical detection SPR sensor with grating coupled backside illumination. Opt. Express 2019, 27, 17763–17770. [Google Scholar] [CrossRef] [PubMed]
- Glass, A.; Liao, P.; Johnson, A.; Humphrey, L.; Lemons, R.; Olson, D.; Stern, M. Periodically structured amorphous silicon detectors with improved picosecond responsivity. Appl. Phys. Lett. 1984, 44, 77–79. [Google Scholar] [CrossRef]
- Berthold, K.; Beinstingl, W.; Berger, R.; Gornik, E. Surface plasmon enhanced quantum efficiency of metal-insulator-semiconductor junctions in the visible. Appl. Phys. Lett. 1986, 48, 526–528. [Google Scholar] [CrossRef]
- Brongersma, M.L. Plasmonic photodetectors, photovoltaics, and hot-electron devices. Proc. IEEE 2016, 104, 2349–2361. [Google Scholar] [CrossRef]
- Berini, P. Surface plasmon photodetectors and their applications. Laser Photonics Rev. 2014, 8, 197–220. [Google Scholar] [CrossRef]
- Huang, J.A.; Luo, L.B. Low-dimensional plasmonic photodetectors: Recent progress and future opportunities. Adv. Opt. Mater. 2018, 6, 1701282. [Google Scholar] [CrossRef]
- Jestl, M.; Köck, A.; Beinstingl, W.; Gornik, E. Polarization-and wavelength-selective photodetectors. JOSA A 1988, 5, 1581–1584. [Google Scholar] [CrossRef]
- Dmitruk, N.; Mayeva, O.; Mamykin, S.; Yastrubchak, O.; Klopfleisch, M. Characterization and application of multilayer diffraction gratings as optochemical sensors. Sens. Actuators A Phys. 2001, 88, 52–57. [Google Scholar] [CrossRef]
- Dmitruk, N.; Borkovskaya, O.Y.; Mayeva, O.; Fursenko, O. Polarization-sensitive photocurrents of metal-semiconductor structures with flat and microrelief interfaces. Microelectron. J. 1996, 27, 37–42. [Google Scholar] [CrossRef]
- Korovin, A.V.; Dmitruk, N.L.; Mamykin, S.V.; Myn’ko, V.I.; Sosnova, M.V. Enhanced dielectric environment sensitivity of surface plasmon-polariton in the surface-barrier heterostructures based on corrugated thin metal films with quasi-anticorrelated interfaces. Nanoscale Res. Lett. 2017, 12, 217. [Google Scholar] [CrossRef]
- Gnilitskyi, I.; Mamykin, S.; Dusheyko, M.; Borodinova, T.; Maksimchuk, N.; Orazi, L. Diffraction Gratings Prepared by HR-LIPSS for New Surface Plasmon-Polariton Photodetectors & Sensors. In Proceedings of the Frontiers in Optics, Rochester, NY, USA, 17–21 October 2016; p. JW4A.88. [Google Scholar]
- Dmitruk, N.; Klopfleisch, M.; Mayeva, O.; Mamykin, S.; Venger, E.; Yastrubchak, O. Multilayer diffraction gratings Al/GaAs as polaritonic photodetectors. Phys. Status Solidi A 2001, 184, 165–174. [Google Scholar] [CrossRef]
- Gérard, D.; Gray, S.K. Aluminium plasmonics. J. Phys. D Appl. Phys. 2014, 48, 184001. [Google Scholar] [CrossRef]
- Knight, M.W.; King, N.S.; Liu, L.; Everitt, H.O.; Nordlander, P.; Halas, N.J. Aluminum for plasmonics. ACS Nano 2014, 8, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, J.; Al Masri, M.; Veillas, C.; Celle, F.; Cioulachtjian, S.; Verrier, I.; Lefèvre, F.; Parriaux, O.; Jourlin, Y. Condensation phenomenon detection through surface plasmon resonance. Opt. Express 2017, 25, 24189–24198. [Google Scholar] [CrossRef]
- Gao, Y.; Murai, S.; Shinozaki, K.; Ishii, S.; Tanaka, K. Aluminum for near infrared plasmonics: Amplified up-conversion photoluminescence from core–shell nanoparticles on periodic lattices. Adv. Opt. Mater. 2021, 9, 2001040. [Google Scholar] [CrossRef]
- Moharam, M.; Gaylord, T.K. Rigorous coupled-wave analysis of planar-grating diffraction. JOSA 1981, 71, 811–818. [Google Scholar] [CrossRef]
- Moharam, M.; Pommet, D.A.; Grann, E.B.; Gaylord, T.K. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach. JOSA A 1995, 12, 1077–1086. [Google Scholar] [CrossRef]
- Watts, R.; Sambles, J.; Hutley, M.; Preist, T.; Lawrence, C. A new optical technique for characterizing reference artefacts for surface profilometry. Nanotechnology 1997, 8, 35. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998; Volume 3. [Google Scholar]
- Dan’ko, V.; Dmitruk, M.; Indutnyi, I.; Mamykin, S.; Myn’ko, V.; Shepeliavyi, P.; Lukaniuk, M.; Lytvyn, P. Au gratings fabricated by interference lithography for experimental study of localized and propagating surface plasmons. Nanoscale Res. Lett. 2017, 12, 190. [Google Scholar] [CrossRef]
- Lalanne, P.; Morris, G.M. Highly improved convergence of the coupled-wave method for TM polarization. JOSA A 1996, 13, 779–784. [Google Scholar] [CrossRef]
- Indutnyi, I.Z.; Mynko, V.I.; Sopinskyy, M.V.; Dan’ko, V.A.; Lytvyn, P.M. Investigation of the surface plasmon-polaritons excitation efficiency on aluminum gratings taking into account diffracted radiation. Optoelectron. Semicond. Tech. 2021, 1, 71–82. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyaschuk, Y.; Indutnyi, I.; Myn’ko, V.; Romanyuk, V.; Mamontova, I.; Redko, R.; Dusheyko, M.; Savchuk, Y.; Tochkovyi, V.; Shtykalo, O.; et al. Aluminum-Based Plasmonic Photodetector for Sensing Applications. Appl. Sci. 2024, 14, 4546. https://doi.org/10.3390/app14114546
Lyaschuk Y, Indutnyi I, Myn’ko V, Romanyuk V, Mamontova I, Redko R, Dusheyko M, Savchuk Y, Tochkovyi V, Shtykalo O, et al. Aluminum-Based Plasmonic Photodetector for Sensing Applications. Applied Sciences. 2024; 14(11):4546. https://doi.org/10.3390/app14114546
Chicago/Turabian StyleLyaschuk, Yurii, Ivan Indutnyi, Viktor Myn’ko, Volodymyr Romanyuk, Iryna Mamontova, Roman Redko, Mykhailo Dusheyko, Yelizaveta Savchuk, Vasyl Tochkovyi, Oleksandr Shtykalo, and et al. 2024. "Aluminum-Based Plasmonic Photodetector for Sensing Applications" Applied Sciences 14, no. 11: 4546. https://doi.org/10.3390/app14114546
APA StyleLyaschuk, Y., Indutnyi, I., Myn’ko, V., Romanyuk, V., Mamontova, I., Redko, R., Dusheyko, M., Savchuk, Y., Tochkovyi, V., Shtykalo, O., Kuznetsova, D., & Mamykin, S. (2024). Aluminum-Based Plasmonic Photodetector for Sensing Applications. Applied Sciences, 14(11), 4546. https://doi.org/10.3390/app14114546