Sedimentary Environment and Enrichment of Organic Matter in the Shahejie Formation, Huanghekou Depression, Bohai Bay Basin, China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
4. Results
4.1. Rock-Eval Pyrolysis, Vitrinite Reflectance Data, and Source Rock Quality
4.2. Biomarker Compounds
4.3. Major and Trace Elements
5. Discussion
5.1. Organic Matter Sources
5.2. Deposition Environment
5.3. Palaeoclimate
5.4. Developmental Models for Source Rocks
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Tian, J.; Cui, H.; Ma, X.; Song, X.; Yuan, Q.; Liu, J. Hydrocarbon generation mechanism of lamalginite- and telalginite-dominated source rocks in a saline lake basin: A case study of the Permian Lucaogou formation in the Jimusaer Sag, Junggar Basin. Energy Geosci. 2023, 4, 100191. [Google Scholar] [CrossRef]
- Hao, F.; Zhou, X.; Zhu, Y.; Yang, Y. Lacustrine Source Rock Deposition in Response to Co-Evolution of Environments and Organisms Controlled by Tectonic Subsidence and Climate, Bohai Bay Basin, China. Org. Geochem. 2011, 42, 323–339. [Google Scholar] [CrossRef]
- Hao, F.; Zhou, X.; Zhu, Y.; Zou, H.; Bao, X.; Kong, Q. Mechanisms of Petroleum Accumulation in the Bozhong Sub-Basin, Bohai Bay Basin, China. Part 1: Origin and Occurrence of Crude Oils. Mar. Pet. Geol. 2009, 26, 1528–1542. [Google Scholar] [CrossRef]
- Hao, F.; Zou, H.; Gong, Z.; Deng, Y. Petroleum Migration and Accumulation in the Bozhong Sub-Basin, Bohai Bay Basin, China: Significance of Preferential Petroleum Migration Pathways (PPMP) for the Formation of Large Oilfields in Lacustrine Fault Basins. Mar. Pet. Geol. 2007, 24, 1–13. [Google Scholar] [CrossRef]
- Sun, T.; Fu, G.; Lv, Y.F.; Hu, M.; Liu, Z.; Wang, H. Main controlling factors on the hydrocarbon accumulation in the middle-shallow layer of 1st structure, Nanpu Sag. Nat. Gas Geosci. 2014, 25, 1042–1051, (In Chinese with English Abstract). [Google Scholar]
- Zhuang, X.; Zou, Y.; Jiang, X.; Yang, Y.; Sun, H. Development Mechanism of Lacustrine Source Rocks in Yellow River. Sci. Technol. Rev. 2010, 28, 48–54, (In Chinese with English Abstract). [Google Scholar]
- Gong, L.; Wang, J.; Gao, S.; Fu, X.; Liu, B.; Miao, F.; Zhou, X.; Meng, Q. Characterization, Controlling Factors and Evolution of Fracture Effectiveness in Shale Oil Reservoirs. J. Pet. Sci. Eng. 2021, 203, 108655. [Google Scholar] [CrossRef]
- Huang, H.; Pearson, M.J. Source Rock Palaeoenvironments and Controls on the Distribution of Dibenzothiophenes in Lacustrine Crude Oils, Bohai Bay Basin, Eastern China. Org. Geochem. 1999, 30, 1455–1470. [Google Scholar] [CrossRef]
- Lan, X.; Liu, H. The Geochemical Characteristics of the Paleogene Lacustrine Source Rock and Cenozoic Oil in the Eastern Huanghekou Sag, Bohai Bay Basin, China: An Oil–Source Rock Correlation. J. Pet. Sci. Eng. 2022, 214, 110434. [Google Scholar] [CrossRef]
- Wang, E.; Li, C.; Feng, Y.; Song, Y.; Guo, T.; Li, M.; Chen, Z. Novel Method for Determining the Oil Moveable Threshold and an Innovative Model for Evaluating the Oil Content in Shales. Energy 2022, 239, 121848. [Google Scholar] [CrossRef]
- Peng, W.; Sun, H.; Zhang, R.; Yu, H.; Zhang, X. Later-stage near-source prepondernt hydrocarbon pooling pattern in the Huanghekou Sag of the Bohai Sea waters. Oil Gas Geol. 2009, 30, 510–518, (In Chinese with English Abstract). [Google Scholar]
- Chen, B.; Hao, F.; Zou, Y. Geochemical Character of the hydrocarbon in BZ26-2 Oilfield Bozhong Depression and its implication for petroleum accumulation. J. Xi’an Shiyou Univ. 2006, 1–4+113, (In Chinese with English Abstract). [Google Scholar]
- Liu, Z.; Li, S.; Xin, R.; Xu, C.; Cheng, J. Paleoclimatic information in stratigraphic records and its r elation to the formation of hydrocarbon source rocks—A case study of the Paleogene strata in the Huanghekou subbasin of the Bohai Bay basin, China. Geollogical Bull. China 2007, 26, 830–840, (In Chinese with English Abstract). [Google Scholar]
- Wu, K.Q.; Jiang, X.; Sun, H. Model of lacustrine source rocks in offshore oil kitchen sags: A case study of paleogene in Huanghekou Sag. Geol. Sci. Tecnol. Inf. 2015; 34, 63–70, (In Chinese with English Abstract). [Google Scholar]
- Sun, H.F.; Zhou, X.; Peng, W.X.; Zou, Y.; Yang, B.; Zeng, X. Late-stage hydrocarbon accumulation and enrichment in the Huanghekou Sag, southern Bohai Sea. Pet. Explor. Dev. 2011, 38, 307–313, (In Chinese with English Abstract). [Google Scholar]
- Carroll, A.R.; Simon, C.; Graham, S.A. Brass Upper Permian Lacustrine Oil Shales, Southern Junggar Basin, Northwest China. AAPG Bull. 1992, 76, 1874–1902. [Google Scholar] [CrossRef]
- Bradley, W.H. Oil Shale Formed in Desert Environment: Green River Formation, Wyoming. Geol. Soc. Am. Bull. 1973, 84, 1121. [Google Scholar] [CrossRef]
- Jiang, Y.; Hou, D.; Li, H.; Zhang, Z.; Guo, R. Impact of the Paleoclimate, Paleoenvironment, and Algae Bloom: Organic Matter Accumulation in the Lacustrine Lucaogou Formation of Jimsar Sag, Junggar Basin, NW China. Energies 2020, 13, 1488. [Google Scholar] [CrossRef]
- Liang, C.; Cao, Y.; Jiang, Z.; Wu, J.; Guoqi, S.; Wang, Y. Shale Oil Potential of Lacustrine Black Shale in the Eocene Dongying Depression: Implications for Geochemistry and Reservoir Characteristics. AAPG Bull. 2017, 101, 1835–1858. [Google Scholar] [CrossRef]
- Wu, P.; Hou, D.; Gan, J.; Li, X.; Ding, W.; Liang, G.; Wu, B. Paleoenvironment and Controlling Factors of Oligocene Source Rock in the Eastern Deep-Water Area of the Qiongdongnan Basin: Evidences from Organic Geochemistry and Palynology. Energy Fuels 2018, 32, 7423–7437. [Google Scholar] [CrossRef]
- Zeng, S.; Wang, J.; Fu, X.; Chen, W.; Feng, X.; Wang, D.; Song, C.; Wang, Z. Geochemical Characteristics, Redox Conditions, and Organic Matter Accumulation of Marine Oil Shale from the Changliang Mountain Area, Northern Tibet, China. Mar. Pet. Geol. 2015, 64, 203–221. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, W.; Xie, L. Controls on Organic Matter Accumulation in the Triassic Chang 7 Lacustrine Shale of the Ordos Basin, Central China. Int. J. Coal Geol. 2017, 183, 38–51. [Google Scholar] [CrossRef]
- Li, S.Z.; Suo, Y.H.; Santosh, M.; Dai, L.M.; Liu, X.; Yu, S.; Zhao, S.J.; Jin, C. Mesozoic to Cenozoic Intracontinental Deformation and Dynamics of the North China Craton. Geol. J. 2013, 48, 543–560. [Google Scholar] [CrossRef]
- Liu, H.; Xia, Q.; Somerville, I.D.; Wang, Y.; Zhou, X.; Niu, C.; Du, X.; Zhang, X. Paleogene of the Huanghekou Sag in the Bohai Bay Basin, NE China: Deposition-Erosion Response to a Slope Break System of Rift Lacustrine Basins: Slope Break System of Paleogene Rift Lacustrine Basins. Geol. J. 2015, 50, 71–92. [Google Scholar] [CrossRef]
- Qi, J.; Yang, Q. Cenozoic Structural Deformation and Dynamic Processes of the Bohai Bay Basin Province, China. Mar. Pet. Geol. 2010, 27, 757–771. [Google Scholar] [CrossRef]
- Tong, K.; Zhao, C.; Lü, Z.; Zhang, Y.; Zheng, H.; Xu, S.; Wang, J.; Pan, L. Reservoir Evaluation and Fracture Chracterization of the Metamorphic Buried Hill Reservoir in Bohai Bay Basin. Pet. Explor. Dev. 2012, 39, 62–69. [Google Scholar] [CrossRef]
- Hu, S.; O’Sullivan, P.B.; Raza, A.; Kohn, B.P. Thermal History and Tectonic Subsidence of the Bohai Basin, Northern China: A Cenozoic Rifted and Local Pull-Apart Basin. Phys. Earth Planet. Inter. 2001, 126, 221–235. [Google Scholar] [CrossRef]
- Cong, F.; Zhang, H.; Hao, F.; Xu, S. Direct Control of Normal Fault in Hydrocarbon Migration and Accumulation in Northwestern Bozhong Subbasin, Bohai Bay Basin, China. Mar. Pet. Geol. 2020, 120, 104555. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, D.; Jiang, Y.; Zhuang, M.; Liu, Y. Hydrocarbon Accumulation Model for Neogene Traps in the Chengdao Area, Bohai Bay Basin, China. Mar. Pet. Geol. 2016, 77, 731–745. [Google Scholar] [CrossRef]
- Schultz, R.B. Geochemical Relationships of Late Paleozoic Carbon-Rich Shales of the Midcontinent, USA: A Compendium of Results Advocating Changeable Geochemical Conditions. Chem. Geol. 2004, 206, 347–372. [Google Scholar] [CrossRef]
- Ding, W.; Hou, D.; Gan, J.; Wu, P.; Zhang, M.; George, S.C. Palaeovegetation Variation in Response to the Late Oligocene-Early Miocene East Asian Summer Monsoon in the Ying-Qiong Basin, South China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 567, 110205. [Google Scholar] [CrossRef]
- Haberer, R.M.; Mangelsdorf, K.; Wilkes, H.; Horsfield, B. Occurrence and Palaeoenvironmental Significance of Aromatic Hydrocarbon Biomarkers in Oligocene Sediments from the Mallik 5L-38 Gas Hydrate Production Research Well (Canada). Org. Geochem. 2006, 37, 519–538. [Google Scholar] [CrossRef]
- Izart, A.; Suarez-Ruiz, I.; Bailey, J. Paleoclimate Reconstruction from Petrography and Biomarker Geochemistry from Permian Humic Coals in Sydney Coal Basin (Australia). Int. J. Coal Geol. 2015, 138, 145–157. [Google Scholar] [CrossRef]
- Jiang, L.; George, S.C. Biomarker Signatures of Upper Cretaceous Latrobe Group Hydrocarbon Source Rocks, Gippsland Basin, Australia: Distribution and Palaeoenvironment Significance of Aliphatic Hydrocarbons. Int. J. Coal Geol. 2018, 196, 29–42. [Google Scholar] [CrossRef]
- Otto, A.; Simoneit, B.R.T.; Rember, W.C. Conifer and Angiosperm Biomarkers in Clay Sediments and Fossil Plants from the Miocene Clarkia Formation, Idaho, USA. Org. Geochem. 2005, 36, 907–922. [Google Scholar] [CrossRef]
- Paul, S.; Sharma, J.; Singh, B.D.; Saraswati, P.K.; Dutta, S. Early Eocene Equatorial Vegetation and Depositional Environment: Biomarker and Palynological Evidences from a Lignite-Bearing Sequence of Cambay Basin, Western India. Int. J. Coal Geol. 2015, 149, 77–92. [Google Scholar] [CrossRef]
- van Aarssen, B.G.K.; Alexander, R.; Kagi, R.I. Higher Plant Biomarkers Reflect Palaeovegetation Changes during Jurassic Times. Geochim. Cosmochim. Acta 2000, 64, 1417–1424. [Google Scholar] [CrossRef]
- Ding, W.; Hou, D.; Gan, J.; Jiang, L.; Zhang, Z.; George, S.C. Sedimentary Geochemical Records of Late Miocene-Early Pliocene Palaeovegetation and Palaeoclimate Evolution in the Ying-Qiong Basin, South China Sea. Mar. Geol. 2022, 445, 106750. [Google Scholar] [CrossRef]
- Jiang, L.; George, S.C. Biomarker Signatures of Upper Cretaceous Latrobe Group Petroleum Source Rocks, Gippsland Basin, Australia: Distribution and Geological Significance of Aromatic Hydrocarbons. Org. Geochem. 2019, 138, 103905. [Google Scholar] [CrossRef]
- Samad, S.K.; Mishra, D.K.; Mathews, R.P.; Ghosh, S.; Mendhe, V.A.; Varma, A.K. Geochemical Attributes for Source Rock and Palaeoclimatic Reconstruction of the Auranga Basin, India. J. Pet. Sci. Eng. 2020, 185, 106665. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, G.; Xiang, B.; Wang, P.; Niu, G.; Niu, Z.; Li, C.; Wang, C. Geochemical Characteristics of Crude Oil from a Tight Oil Reservoir in the Lucaogou Formation, Jimusar Sag, Junggar Basin. AAPG Bull. 2017, 101, 39–722. [Google Scholar] [CrossRef]
- Ding, X.; Gao, C.; Zha, M.; Chen, H.; Su, Y. Depositional Environment and Factors Controlling β-Carotane Accumulation: A Case Study from the Jimsar Sag, Junggar Basin, Northwestern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 485, 833–842. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Meinschein, W.G. Sterols as Ecological Indicators. Geochim. Cosmochim. Acta 1979, 43, 739–745. [Google Scholar] [CrossRef]
- Volkman, J.K. Sterols and Other Triterpenoids: Source Specificity and Evolution of Biosynthetic Pathways. Org. Geochem. 2005, 36, 139–159. [Google Scholar] [CrossRef]
- Morford, J.L.; Emerson, S. The Geochemistry of Redox Sensitive Trace Metals in Sediments. Geochim. Cosmochim. Acta 1999, 63, 1735–1750. [Google Scholar] [CrossRef]
- Cao, J.; Wu, M.; Chen, Y.; Hu, K.; Bian, L.; Wang, L.; Zhang, Y. Trace and Rare Earth Element Geochemistry of Jurassic Mudstones in the Northern Qaidam Basin, Northwest China. Geochemistry 2012, 72, 245–2522. [Google Scholar] [CrossRef]
- Niu, Z.; Meng, W.; Wang, Y.; Wang, X.; Li, Z.; Wang, J.; Liu, H.; Wang, X. Characteristics of Trace Elements in Crude Oil in the East Section of the South Slope of Dongying Sag and Their Application in Crude Oil Classification. J. Pet. Sci. Eng. 2022, 209, 109833. [Google Scholar] [CrossRef]
- Shi, C.; Cao, J.; Luo, B.; Hu, W.; Tan, X.; Tian, X. Major Elements Trace Hydrocarbon Sources in Over-Mature Petroleum Systems: Insights from the Sinian Sichuan Basin, China. Precambrian Res. 2020, 343, 105726. [Google Scholar] [CrossRef]
- Wang, L.; Song, Z.; Yin, Q.; George, S.C. Paleosalinity Significance of Occurrence and Distribution of Methyltrimethyltridecyl Chromans in the Upper Cretaceous Nenjiang Formation, Songliao Basin, China. Org. Geochem. 2011, 42, 1411–1419. [Google Scholar] [CrossRef]
- Du, G.; Yang, Z.; Yin, H.; Wang, F.; Chen, Y.; Cui, Y. Developmental characteristics of organic matter and its enrichment model in shale reservoirs of Chang73 Member in Yanchang Formation of southeast Ordos Basin. Pet. Geol. Recovery Effic. 2022, 29, 1–11, (In Chinese with English Abstract). [Google Scholar]
- Chattopadhyay, A.; Dutta, S. Higher Plant Biomarker Signatures of Early Eocene Sediments of North Eastern India. Mar. Pet. Geol. 2014, 57, 51–67. [Google Scholar] [CrossRef]
- Jones, B.; Manning, D.A.C. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chem. Geol. 1994, 111, 111–129. [Google Scholar] [CrossRef]
- Wignall, P.B.; Twitchett, R.J. Oceanic Anoxia and the End Permian Mass Extinction. Science 1996, 272, 1155–1158. [Google Scholar] [CrossRef] [PubMed]
- Awan, R.S.; Liu, C.; Gong, H.; Dun, C.; Tong, C.; Chamssidini, L.G. Paleo-Sedimentary Environment in Relation to Enrichment of Organic Matter of Early Cambrian Black Rocks of Niutitang Formation from Xiangxi Area China. Mar. Pet. Geol. 2020, 112, 104057. [Google Scholar] [CrossRef]
- Fathy, D.; Wagreich, M.; Gier, S.; Mohamed, R.S.A.; Zaki, R.; El Nady, M.M. Maastrichtian Oil Shale Deposition on the Southern Tethys Margin, Egypt: Insights into Greenhouse Climate and Paleoceanography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 505, 18–32. [Google Scholar] [CrossRef]
- Hoş-Çebi, F. Organic Geochemical Characteristics and Paleoclimate Conditions of the Miocene Coals at the Çan-Durali (Çanakkale). J. Afr. Earth Sci. 2017, 129, 117–135. [Google Scholar] [CrossRef]
Well | Depth (m) | Shahejie Formation | TOC (%) Average | Ro (%) Average | Tmax (°C) Average | IH (mg HC/g·TOC) Average | S1 + S2 (mg/g) Average |
---|---|---|---|---|---|---|---|
B25-1 | 3593–3600 | E2s4 | 2.84 | 0.57 | 443.33 | 302.15 | 10.01 |
B25-2 | 3359.2–3660.2 | E2s3 | 3.3 | 1.07 | 436.25 | 417.43 | 16.53 |
B25-5 | 3543.81–3684.5 | E2s3 | 4.76 | 0.72 | 439.33 | 614.79 | 41.79 |
B26-1 | 3550–3640 | E2s3 | 3.07 | 0.6 | 441.75 | 513.31 | 19.22 |
B27-1 | 3710–3730 | E3s1 | 0.76 | 0.9 | 448 | 205.44 | 1.86 |
3790–3860 | E3s2 | 0.92 | 0.98 | 447 | 211 | 2.33 | |
3890 | E2s3 | 1.02 | 1.15 | 449 | 200 | 2.37 | |
3920–3950 | E2s4 | 1.19 | 1.18 | 449.33 | 161.45 | 2.43 | |
B28-2 | 3325–3375 | E3s2 | 0.98 | 0.57 | 411 | 587.57 | 6.37 |
3400–3600 | E2s3 | 2.96 | 0.61 | 433.33 | 471.99 | 15.45 | |
B28-1 | 3190–3250 | E3s1 | 2.6 | 0.64 | 441.25 | 594.81 | 18.28 |
3270–3290 | E3s2 | 2.17 | 0.65 | 440.5 | 569.9 | 15.07 | |
3320–3640 | E2s3 | 2.6 | 0.63 | 442.09 | 402.99 | 13.75 | |
B29-6 | 3000–3070 | E3s1 | 1.47 | 0.47 | 441 | 379.07 | 6.39 |
3120–3170 | E3s2 | 2.24 | 0.53 | 443.5 | 396.5 | 10.12 | |
3220–3450 | E2s3 | 2.46 | 0.57 | 442.6 | 332.52 | 10.16 | |
B29-2 | 2690–2720 | E3s1 | 2.11 | 0.46 | 436 | 574.95 | 12.75 |
2750 | E3s2 | 0.89 | 0.49 | 442 | 423.6 | 4.11 | |
2780–2840 | E2s3 | 1.34 | 0.56 | 439.33 | 388.24 | 6.56 | |
B33-1 | 3600 | E3s1 | 0.9 | 0.6 | 435 | 306.67 | 3.03 |
3800–3975 | E2s3 | 3.09 | 0.62 | 438.38 | 352.47 | 13.81 | |
B34-2 | 3365.5 | E2s3 | 0.96 | 0.48 | 440 | 225 | 2.28 |
B34-3 | 3550–3650 | E2s3 | 0.5 | 0.58 | 443.67 | 148.34 | 0.99 |
3450–3500 | E3s2 | 0.53 | 0.49 | 442.5 | 203.06 | 1.36 | |
B34-4 | 3276.7 | E3s1 | 0.68 | 0.4 | 441 | 199.71 | 1.56 |
B34-5 | 3276–3297.5 | E3s1 | 0.61 | 0.32 | 445.5 | 208.43 | 1.47 |
B34-7 | 3035 | E3s1 | 11.6 | 0.31 | 436 | 808.19 | 95.68 |
B34-9 | 2980–3020 | E3s1 | 1.07 | 0.64 | 440 | 426.37 | 5.04 |
3060–3140 | E3s2 | 0.76 | 0.64 | 443.5 | 471.59 | 4.3 | |
3220–3500 | E2s3 | 1 | 0.66 | 447.57 | 415.99 | 4.15 | |
B34-9E | 3010–3180 | E3s2 | 0.35 | 0.6 | 413.5 | 574.4 | 1.63 |
B35-2 | 2700–2750 | E3s1 | 0.87 | 0.5 | 435.33 | 200.26 | 1.92 |
2770–2820 | E2s3 | 0.61 | 0.56 | 434.33 | 261.76 | 2 | |
2900–2950 | E2s3 | 1.45 | 0.51 | 438 | 390.51 | 7 | |
B36-1 | 2260 | E2s3 | 2.5 | 0.46 | 434 | 513.2 | 13.25 |
K2-1 | 3300–3380 | E3s1 | 0.7 | 0.71 | 445 | 242.37 | 2.04 |
3420–3500 | E3s2 | 0.8 | 0.64 | 444.67 | 226.83 | 2.94 | |
3540–3700 | E2s3 | 1.13 | 0.67 | 446 | 268.22 | 3.51 | |
K3-2 | 2800–2890 | E3s1 | 0.66 | 0.6 | 422.71 | 273.94 | 1.93 |
2900–2970 | E3s2 | 0.67 | 0.65 | 372 | 297.42 | 2.12 | |
3000–3210 | E2s3 | 0.9 | 0.71 | 393.36 | 314.89 | 3.03 | |
K3-4 | 3110–3200 | E3s1 | 0.42 | 0.58 | 433.25 | 269.97 | 1.35 |
3290–3390 | E2s3 | 0.75 | 0.64 | 433.6 | 295.16 | 2.63 | |
3420 | E2s3 | 1.16 | 0.74 | 411 | 258.63 | 3.72 |
Well | OEP Average | ACL Average | Ph/nC18 Average | Pr/nC17 Average | Pr/Ph Average |
---|---|---|---|---|---|
B25-1 | 1.07 | 17.88 | 0.41 | 0.59 | 1.5 |
B25-2 | n.d. | n.d. | n.d. | n.d. | n.d. |
B25-3 | 1.12 | 17.29 | 0.32 | 0.43 | 1.21 |
B25-5 | n.d. | n.d. | n.d. | n.d. | n.d. |
B26-1 | 1.35 | 17.39 | 1.68 | 1.4 | 1.24 |
B27-1 | 1.12 | 18.47 | 0.19 | 0.43 | 2.1 |
B28-1 | 1.19 | 18.5 | 0.35 | 0.81 | 1.4 |
B28-2 | 1.14 | 17.65 | 0.28 | 0.49 | 1.77 |
B29-6 | n.d. | n.d. | n.d. | n.d. | n.d. |
B29-2 | 1.2 | 16.49 | 0.62 | 0.93 | 1.75 |
B29-3 | 1.34 | 19.34 | 0.49 | 0.82 | 3.44 |
B33-1 | 1.1 | 18.24 | 0.46 | 0.47 | 1.45 |
B34-1 | 1.16 | 17.8 | 0.33 | 0.52 | 0.78 |
B34-2 | 1.14 | 18.23 | 0.31 | 0.43 | 1.33 |
B34-3 | 1.14 | 17.76 | 0.28 | 0.43 | 1.35 |
B34-5 | 1.18 | 15.36 | 0.41 | 1.01 | 1.38 |
B34-6 | 1.12 | 15.26 | 0.69 | 1.52 | 1.41 |
B34-7 | 1.15 | 16.31 | 0.38 | 0.66 | 1.28 |
B34-9 | 1.16 | 16.96 | 0.47 | 0.81 | 1.06 |
B34-9A | 1.12 | 15.75 | 0.56 | 1.06 | 1.94 |
B34-9E | 1.13 | 16.34 | 1.21 | 1.28 | 1.58 |
B36-1 | 1.51 | 14.47 | 1.97 | 1.42 | 0.75 |
K2-1 | 1.16 | 18.2 | 0.42 | 0.75 | 1.66 |
K3-2 | 1.17 | 14.37 | 0.75 | 0.65 | 2.28 |
K4-1 | 1.12 | 18.99 | 0.9 | 1.1 | 1.62 |
Well | Ga/C30Hop Average | C27 Steranes Average | C28 Steranes Average | C29 Steranes Average |
---|---|---|---|---|
B25-1 | n.d. | n.d. | n.d. | n.d. |
B25-2 | 0.1 | 0.23 | 0.18 | 0.59 |
B25-3 | n.d. | n.d. | n.d. | n.d. |
B25-5 | 0.05 | 0.29 | 0.24 | 0.48 |
B26-1 | 0.11 | 0.37 | 0.12 | 0.5 |
B27-1 | 0.24 | 0.44 | 0.24 | 0.32 |
B28-1 | n.d. | n.d. | n.d. | n.d. |
B28-2 | n.d. | n.d. | n.d. | n.d. |
B29-6 | 0.54 | 0.35 | 0.17 | 0.48 |
B29-2 | 0.12 | 0.48 | 0.16 | 0.36 |
B29-3 | 0.14 | 0.48 | 0.25 | 0.27 |
B33-1 | n.d. | n.d. | n.d. | n.d. |
B34-1 | 0.42 | 0.18 | 0.22 | 0.59 |
B34-2 | n.d. | n.d. | n.d. | n.d. |
B34-3 | n.d. | n.d. | n.d. | n.d. |
B34-5 | 0.22 | 0.23 | 0.2 | 0.58 |
B34-6 | n.d. | n.d. | n.d. | n.d. |
B34-7 | 0.4 | 0.59 | 0.16 | 0.25 |
B34-9 | 0.05 | 0.31 | 0.09 | 0.6 |
B34-9A | 0.17 | 0.45 | 0.14 | 0.42 |
B34-9E | n.d. | n.d. | n.d. | n.d. |
B36-1 | 0.1 | 0.45 | 0.17 | 0.38 |
K2-1 | 0.12 | 0.52 | 0.17 | 0.31 |
K3-2 | 0.53 | 0.45 | 0.24 | 0.32 |
K4-1 | 0.45 | 0.46 | 0.09 | 0.45 |
Shahejie Formation | SiO2 (%) Average | Al2O3 + K2O + Na2O (%) Average | Co (μg/g) Average | V/(V + Ni) (μg/g) Average | V/Cr (μg/g) Average |
---|---|---|---|---|---|
E3s1 | 50.02 | 19.42 | 15.68 | 0.74 | 0.69 |
E2s3 | 50.37 | 16.92 | 23.5 | 0.71 | 1.12 |
MgO/CaO (%) | C Value | K2O/Al2O3 (%) | V/Ni (μg/g) | ||
E3s1 | 1.92 | n.d. | n.d. | 3.01 | n.d. |
E2s3 | 0.42 | 0.51 | 0.24 | 2.41 | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Z.; Hou, D.; He, J. Sedimentary Environment and Enrichment of Organic Matter in the Shahejie Formation, Huanghekou Depression, Bohai Bay Basin, China. Appl. Sci. 2024, 14, 4547. https://doi.org/10.3390/app14114547
Jia Z, Hou D, He J. Sedimentary Environment and Enrichment of Organic Matter in the Shahejie Formation, Huanghekou Depression, Bohai Bay Basin, China. Applied Sciences. 2024; 14(11):4547. https://doi.org/10.3390/app14114547
Chicago/Turabian StyleJia, Zhenjie, Dujie Hou, and Jiahao He. 2024. "Sedimentary Environment and Enrichment of Organic Matter in the Shahejie Formation, Huanghekou Depression, Bohai Bay Basin, China" Applied Sciences 14, no. 11: 4547. https://doi.org/10.3390/app14114547
APA StyleJia, Z., Hou, D., & He, J. (2024). Sedimentary Environment and Enrichment of Organic Matter in the Shahejie Formation, Huanghekou Depression, Bohai Bay Basin, China. Applied Sciences, 14(11), 4547. https://doi.org/10.3390/app14114547