Developing a Dynamic Feature Selection System (DFSS) for Stock Market Prediction: Application to the Korean Industry Sectors
Abstract
:1. Introduction
2. Literature Review
2.1. Stock Price Prediction
2.2. Feature Selection
2.3. Feature Selection for Stock Price Prediction
3. Methodology
3.1. Filter Method
3.2. Wrapper Method
3.3. Embedded Method
3.4. Ensemble Method
4. Empirical Study
4.1. Data Preprocessing
4.2. Performance Evaluation
4.3. Rank Comparison
5. Experimental Results
5.1. Average Results across All Sectors in DFSS
5.2. Results for Each Sector in DFSS
5.3. The Dynamic Nature of DFSS
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Energy | |||
Feature Class | Percentage | Feature Class | Average Importance Ranking of Feature |
Price | 0.500 | Economic | 2.000 |
Technical | 0.500 | Market Sentiment | 8.500 |
Market Sentiment | 0.400 | Technical | 10.727 |
Financial | 0.286 | Price | 10.750 |
Economic | 0.059 | Financial | 15.000 |
Fundamental | 0 | Fundamental | - |
Material | |||
Feature Class | Percentage | Feature Class | Average Importance Ranking of Feature |
Price | 1 | Financial | 10.500 |
Technical | 0.591 | Price | 11.000 |
Financial | 0.571 | Technical | 17.769 |
Fundamental | 0.500 | Economic | 23.800 |
Economic | 0.294 | Fundamental | 28.750 |
Market Sentiment | 0 | Market Sentiment | - |
Industrial | |||
Feature Class | Percentage | Feature Class | Average Importance Ranking of Feature |
Market Sentiment | 0.800 | Market Sentiment | 4.250 |
Price | 0.625 | Financial | 10.000 |
Technical | 0.455 | Technical | 11.800 |
Financial | 0.143 | Price | 13.000 |
Economic | 0 | Economic | - |
Fundamental | 0 | Fundamental | - |
Consumer Discretionary | |||
Feature Class | Percentage | Feature Class | Average Importance Ranking of Feature |
Financial | 0.286 | Market Sentiment | 2.000 |
Price | 0.250 | Technical | 5.750 |
Market Sentiment | 0.200 | Economic | 6.667 |
Technical | 0.182 | Fundamental | 8.000 |
Economic | 0.176 | Price | 8.500 |
Fundamental | 0.125 | Financial | 10.500 |
Consumer Staples | |||
Feature Class | Percentage | Feature Class | Average Importance Ranking of Feature |
Market Sentiment | 0.600 | Price | 5.333 |
Price | 0.375 | Technical | 6.333 |
Technical | 0.273 | Market Sentiment | 9.000 |
Financial | 0.143 | Financial | 10.000 |
Economic | 0 | Economic | - |
Fundamental | 0 | Fundamental | - |
Health Care | |||
Feature Class | Percentage | Feature Class | Average Importance Ranking of Feature |
Price | 0.250 | Economic | 1.000 |
Market Sentiment | 0.200 | Market Sentiment | 3.000 |
Technical | 0.136 | Technical | 3.667 |
Economic | 0.059 | Price | 6.500 |
Financial | 0 | Financial | - |
Fundamental | 0 | Fundamental | - |
Financial | |||
Feature Class | Percentage | Feature Class | Average Importance Ranking of Feature |
Market Sentiment | 1 | Technical | 19.050 |
Price | 1 | Economic | 22.667 |
Technical | 0.909 | Price | 26.000 |
Economic | 0.529 | Financial | 29.333 |
Financial | 0.429 | Market Sentiment | 31.800 |
Fundamental | 0.250 | Fundamental | 44.000 |
IT | |||
Feature Class | Percentage | Feature Class | Average Importance Ranking of Feature |
Market Sentiment | 0.400 | Price | 1.500 |
Price | 0.250 | Technical | 4.000 |
Technical | 0.136 | Market Sentiment | 6.500 |
Economic | 0 | Economic | - |
Financial | 0 | Financial | - |
Fundamental | 0 | Fundamental | - |
Communication Services (Random Selection) | |||
Feature Class | Percentage | Feature Class | Average Importance Ranking of Feature |
Price | 0.375 | Market Sentiment | 5.000 |
Fundamental | 0.250 | Economic | 6.000 |
Market Sentiment | 0.200 | Financial | 6.000 |
Economic | 0.176 | Technical | 6.000 |
Financial | 0.143 | Price | 7.333 |
Technical | 0.136 | Fundamental | 11.000 |
Utilities (Random Selection) | |||
Feature Class | Percentage | Feature Class | Average Importance Ranking of Feature |
Price | 0.375 | Market Sentiment | 5.000 |
Fundamental | 0.250 | Economic | 6.000 |
Market Sentiment | 0.200 | Financial | 6.000 |
Economic | 0.176 | Technical | 6.000 |
Financial | 0.143 | Price | 7.333 |
Technical | 0.136 | Fundamental | 11.000 |
References
- Sharaf, M.; Hemdan, E.E.D.; El-Sayed, A.; El-Bahnasawy, N.A. StockPred: A framework for stock Price prediction. Multimed. Tools Appl. 2021, 80, 17923–17954. [Google Scholar] [CrossRef]
- Jiang, W. Applications of deep learning in stock market prediction: Recent progress. Expert Syst. Appl. 2021, 184, 115537. [Google Scholar] [CrossRef]
- Contreras, J.; Espinola, R.; Nogales, F.J.; Conejo, A.J. ARIMA models to predict next-day electricity prices. IEEE Trans. Power Syst. 2003, 18, 1014–1020. [Google Scholar] [CrossRef]
- Adebiyi, A.A.; Ayo, C.K.; Adebiyi, M.; Otokiti, S.O. Stock price prediction using neural network with hybridized market indicators. J. Emerg. Trends Comput. Inf. Sci. 2012, 3, 1–9. [Google Scholar]
- Gupta, R.; Garg, N.; Singh, S. Stock market prediction accuracy analysis using kappa measure. In Proceedings of the IEEE 2013 International Conference on Communication Systems and Network Technologies, Gwalior, India, 6–8 April 2013; pp. 635–639. [Google Scholar]
- Wen, F.; Xiao, J.; He, Z.; Gong, X. Stock price prediction based on SSA and SVM. Procedia Comput. Sci. 2014, 31, 625–631. [Google Scholar]
- Girish, G.P. Spot electricity price forecasting in Indian electricity market using autoregressive-GARCH models. Energy Strategy Rev. 2016, 11, 52–57. [Google Scholar] [CrossRef]
- Khare, K.; Darekar, O.; Gupta, P.; Attar, V.Z. Short term stock price prediction using deep learning. In Proceedings of the 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 19–20 May 2017; pp. 482–486. [Google Scholar]
- Fama, E.F. Random walks in stock market prices. Financ. Anal. J. 1995, 51, 75–80. [Google Scholar] [CrossRef]
- Lee, J.W. Stock price prediction using reinforcement learning. In ISIE 2001, Proceedings of the 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No. 01TH8570), Pusan, Republic of Korea, 12–16 June 2001; IEEE: New York, NY, USA, 2001; Volume 1, pp. 690–695. [Google Scholar]
- Vaiz, J.S.; Ramaswami, M. A study on technical indicators in stock price movement prediction using decision tree algorithms. Am. J. Eng. Res. (AJER) 2016, 5, 207–212. [Google Scholar]
- Agrawal, M.; Khan, A.U.; Shukla, P.K. Stock price prediction using technical indicators: A predictive model using optimal deep learning. Learning 2019, 6, 7. [Google Scholar] [CrossRef]
- Naik, N.; Mohan, B.R. Optimal feature selection of technical indicator and stock prediction using machine learning technique. In Emerging Technologies in Computer Engineering: Microservices in Big Data Analytics: Second International Conference, ICETCE 2019, Jaipur, India, 1–2 February 2019; Revised Selected Papers 2; Springer: Singapore, 2019; pp. 261–268. [Google Scholar]
- Islam, M.R.; Nguyen, N. Comparison of financial models for stock price prediction. J. Risk Financ. Manag. 2020, 13, 181. [Google Scholar] [CrossRef]
- Han, T. Stock Price Prediction Using LSTM: Focusing on the Combination of Technical Indicators, Macroeconomic Indicators, and Market Sentiment. Soc. Converg. Knowl. Trans. 2021, 9, 189–198. [Google Scholar]
- Sayavong, L.; Wu, Z.; Chalita, S. Research on stock price prediction method based on convolutional neural network. In Proceedings of the IEEE 2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS), Jishou, China, 14–15 September 2019; pp. 173–176. [Google Scholar]
- Park, K.; Shin, H. Stock price prediction based on a complex interrelation network of economic factors. Eng. Appl. Artif. Intell. 2013, 26, 1550–1561. [Google Scholar] [CrossRef]
- Fang, Z.; Ma, X.; Pan, H.; Yang, G.; Arce, G.R. Movement forecasting of financial time series based on adaptive LSTM-BN network. Expert Syst. Appl. 2023, 213, 119207. [Google Scholar] [CrossRef]
- Nam, K.; Seong, N. Financial news-based stock movement prediction using causality analysis of influence in the Korean stock market. Decis. Support Syst. 2019, 117, 100–112. [Google Scholar] [CrossRef]
- Effrosynidis, D.; Arampatzis, A. An evaluation of feature selection methods for environmental data. Ecol. Inform. 2021, 61, 101224. [Google Scholar] [CrossRef]
- Cateni, S.; Colla, V.; Vannucci, M. A hybrid feature selection method for classification purposes. In Proceedings of the IEEE 2014 European Modelling Symposium, Pisa, Italy, 21–23 October 2014; pp. 39–44. [Google Scholar]
- Fernandes, M.; Canito, A.; Bolón-Canedo, V.; Conceição, L.; Praça, I.; Marreiros, G. Data analysis and feature selection for predictive maintenance: A case-study in the metallurgic industry. Int. J. Inf. Manag. 2019, 46, 252–262. [Google Scholar] [CrossRef]
- Benkessirat, A.; Benblidia, N. Fundamentals of feature selection: An overview and comparison. In Proceedings of the 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA), Abu Dhabi, United Arab Emirates, 3–7 November 2019; pp. 1–6. [Google Scholar]
- Meera, S.; Sundar, C. A hybrid metaheuristic approach for efficient feature selection methods in big data. J. Ambient Intell. Humaniz. Comput. 2021, 12, 3743–3751. [Google Scholar] [CrossRef]
- Khaire, U.M.; Dhanalakshmi, R. Stability of feature selection algorithm: A review. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 1060–1073. [Google Scholar] [CrossRef]
- Tsai, C.F.; Hsiao, Y.C. Combining multiple feature selection methods for stock prediction: Union, intersection, and multi-intersection approaches. Decis. Support Syst. 2010, 50, 258–269. [Google Scholar] [CrossRef]
- Ni, L.P.; Ni, Z.W.; Gao, Y.Z. Stock trend prediction based on fractal feature selection and support vector machine. Expert Syst. Appl. 2011, 38, 5569–5576. [Google Scholar] [CrossRef]
- Yuan, X.; Yuan, J.; Jiang, T.; Ain, Q.U. Integrated long-term stock selection models based on feature selection and machine learning algorithms for China stock market. IEEE Access 2020, 8, 22672–22685. [Google Scholar] [CrossRef]
- Chaudhari, K.; Thakkar, A. Neural network systems with an integrated coefficient of variation-based feature selection for stock price and trend prediction. Expert Syst. Appl. 2023, 219, 119527. [Google Scholar] [CrossRef]
- Colla, V.; Matarese, N.; Reyneri, L.M. A method to point out anomalous input-output patterns in a database for training neuro-fuzzy system with a supervised learning rule. In Proceedings of the IEEE 2009 Ninth International Conference on Intelligent Systems Design and Applications, Pisa, Italy, 30 November–2 December 2009; pp. 1307–1311. [Google Scholar]
- Magnello, M.E. Karl Pearson and the origins of modern statistics: An elastician becomes a statistician. N. Z. J. Hist. Philos. Sci. Technol. 2005, 1. [Google Scholar]
- Thaseen, I.S.; Kumar, C.A.; Ahmad, A. Integrated intrusion detection model using chi-square feature selection and ensemble of classifiers. Arab. J. Sci. Eng. 2019, 44, 3357–3368. [Google Scholar] [CrossRef]
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138. [Google Scholar] [CrossRef] [PubMed]
- Estévez, P.A.; Tesmer, M.; Perez, C.A.; Zurada, J.M. Normalized mutual information feature selection. IEEE Trans. Neural Netw. 2009, 20, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, A. ANOVA and ANCOVA: A GLM Approach; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Elssied, N.O.F.; Ibrahim, O.; Osman, A.H. A novel feature selection based on one-way anova f-test for e-mail spam classification. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 625–638. [Google Scholar] [CrossRef]
- Fida, M.A.F.A.; Ahmad, T.; Ntahobari, M. Variance threshold as early screening to Boruta feature selection for intrusion detection system. In Proceedings of the IEEE 2021 13th International Conference on Information & Communication Technology and System (ICTS), Virtual, 20–21 October 2021; pp. 46–50. [Google Scholar]
- Hart, P.E.; Stork, D.G.; Duda, R.O. Pattern Classification; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Gu, Q.; Li, Z.; Han, J. Generalized fisher score for feature selection. arXiv 2012, arXiv:1202.3725. [Google Scholar]
- Raj, D.D.; Mohanasundaram, R. An efficient filter-based feature selection model to identify significant features from high-dimensional microarray data. Arab. J. Sci. Eng. 2020, 45, 2619–2630. [Google Scholar] [CrossRef]
- Kohavi, R.; John, G.H. The wrapper approach. In Feature Extraction, Construction and Selection: A Data Mining Perspective; Springer: Boston, MA, USA, 1998; pp. 33–50. [Google Scholar]
- Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput. 2017, 27, 659–678. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4768–4777. [Google Scholar]
- Kursa, M.B.; Rudnicki, W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Keany, E. BorutaShap: A Wrapper Feature Selection Method Which Combines the Boruta Feature Selection Algorithm with Shapley Values; Zenodo: Geneva, Switzerland, 2020. [Google Scholar]
- Zhu, J.; Shan, Y.; Mao, J.C.; Yu, D.; Rahmanian, H.; Zhang, Y. Deep embedding forest: Forest-based serving with deep embedding features. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, USA, 13–17 August 2017; pp. 1703–1711. [Google Scholar]
- Hua, Y. An efficient traffic classification scheme using embedded feature selection and lightgbm. In Proceedings of the IEEE 2020 Information Communication Technologies Conference (ICTC), Nanjing, China, 29–31 May 2020; pp. 125–130. [Google Scholar]
- Saeys, Y.; Abeel, T.; Van de Peer, Y. Robust feature selection using ensemble feature selection techniques. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2008, Antwerp, Belgium, 15–19 September 2008; Proceedings, Part II 19; Springer: Berlin/Heidelberg, Germany, 2008; pp. 313–325. [Google Scholar]
- Hameed, S.S.; Petinrin, O.O.; Hashi, A.O.; Saeed, F. Filter-wrapper combination and embedded feature selection for gene expression data. Int. J. Adv. Soft Compu. Appl 2018, 10, 90–105. [Google Scholar]
- Emerson, P. The original Borda count and partial voting. Soc. Choice Welf. 2013, 40, 353–358. [Google Scholar] [CrossRef]
- Craswell, N. Mean Reciprocal Rank. In Encyclopedia of Database Systems; Springer: New York, NY, USA, 2009; p. 1703. [Google Scholar]
Type | Feature |
---|---|
Technical Indicators | Moving Average Convergence Divergence (MACD), On-Balance Volume (OBV), Commodity Channel Index (CCI), Relative Strength Index (RSI), Stochastic Oscillator D%/K%, Stochastic Oscillator, Disparity Index, Moving Average (5,20,60,120), Bollinger Band (h, l), Average Directional Index (ADX), Accumulation Distribution Index (ADI), Force Index (FI), Money Flow Index (MI), True Strength Index (TSI), Market Facilitation Index (MFI), Williams %R Awesome Oscillator, Rate of Change (ROC) |
Economic Indicators | Exchange Rate (KRW-USD), Exchange Rate (KRW-EUR), Exchange Rate (KRW-JPY), Exchange Rate (KRW-CNY), International Gold Price Monthly, Economic Sentiment Index Monthly, Oil Prices (Crude, Diesel, Gasoline) Monthly, Gross Domestic Product (GDP)_Yearly, Employed Persons Monthly, Unemployed Persons Monthly, Consumer/Producer Price Index, Import/Export Price Index, Housing Sales Price Index Monthly |
Price Indicators | Volume, Daily OHLC (Open, High, Low, Close), Individual/Institution/Foreigner Quantity |
Financial Indicators | Certificate of Deposit (CD) (3 months), Monetary Stability, Government Bonds, M1 Monthly, M2 Monthly, Lf Monthly, KOSPI Index Monthly |
Fundamental Indicators | Sales per Share (SPS), Operating Profit per Share (OPS), Earnings per Share (EPS), Book Value per Share (BPS), Price-to-Earnings Ratio (PER), Price-to-Book Ratio (PBR), Return on Assets (ROA), Return on Equity (ROE Quarterly) |
Market Sentiment Indicators | Google Trends Search Volume Weekly, News Sentiment Index, Naver DataLab Company Name Search Index |
Model | Method | Rank Mean | Rank STD |
---|---|---|---|
SHAP | Wrapper | 7.222 | 4.3 |
BorutaSHAP | Wrapper | 7.453 | 4.483 |
RFE | Wrapper | 7.468 | 4.407 |
NOFS | Random Selection | 7.608 | 4.678 |
Embedded Random Forest | Embedded | 7.628 | 4.341 |
Borda Count | Ensemble | 8.117 | 4.406 |
Embedded LightGBM | Embedded | 8.137 | 4.591 |
Mutual Information | Filter | 8.368 | 4.913 |
Variance Threshold | Filter | 8.687 | 4.68 |
Permutation Importance | Wrapper | 8.768 | 4.618 |
ANOVA F-value | Filter | 8.878 | 4.654 |
Reciprocal Rank | Ensemble | 9.163 | 4.618 |
MultiSURF | Filter | 9.185 | 4.744 |
Fisher Score | Filter | 9.580 | 4.610 |
Embedded Lasso | Embedded | 9.683 | 4.622 |
Chi2 | Filter | 11.058 | 4.849 |
Boruta | Wrapper | 14.650 | 3.543 |
Sector | Algorithm (Feature Count) | Method | 1st Ranked Feature Class by Percentage (%) | 1st Ranked Feature Class in Feature Importance |
---|---|---|---|---|
Energy | RFE (20) | Wrapper | Price (50) | Economic |
Material | Variance Threshold (34) | Filter | Price (100) | Financial |
Industrial | ANOVA F-value (20) | Filter | Market Sentiment (80) | Market Sentiment |
Consumer Discretionary | Mutual Information (13) | Filter | Financial (28.6) | Market Sentiment |
Consumer Staples | SHAP (13) | Wrapper | Market Sentiment (60) | Price |
Health Care | Embedded Random Forest (7) | Embedded | Price (25) | Economic |
Financial | SHAP (47) | Wrapper | Market Sentiment (100) | Technical |
IT | RFE (7) | Wrapper | Market Sentiment (40) | Price |
Communication Services | NOFS (13) | Random Selection | Price (37.5) | Market Sentiment |
Utilities | NOFS (13) | Random Selection | Price (37.5) | Market Sentiment |
Material | |||
Feature Class | Percentage | Feature Class | Average Importance Ranking of Feature |
Price | 1 | Financial | 10.500 |
Technical | 0.591 | Price | 11.000 |
Financial | 0.571 | Technical | 17.769 |
Fundamental | 0.500 | Economic | 23.800 |
Economic | 0.294 | Fundamental | 28.750 |
Market Sentiment | 0 | Market Sentiment | - |
Consumer Discretionary | |||
Feature Class | Percentage | Feature Class | Average Importance Ranking of Feature |
Financial | 0.286 | Market Sentiment | 2.000 |
Price | 0.250 | Technical | 5.750 |
Market Sentiment | 0.200 | Economic | 6.667 |
Technical | 0.182 | Fundamental | 8.000 |
Economic | 0.176 | Price | 8.500 |
Fundamental | 0.125 | Financial | 10.500 |
Financial | |||
Feature Class | Percentage | Feature Class | Average Importance Ranking of Feature |
Market Sentiment | 1 | Technical | 19.050 |
Price | 1 | Economic | 22.667 |
Technical | 0.909 | Price | 26.000 |
Economic | 0.529 | Financial | 29.333 |
Financial | 0.429 | Market Sentiment | 31.800 |
Fundamental | 0.250 | Fundamental | 44.000 |
Sector | Win3 | Win6 | Win12 | Win18 | ||||
---|---|---|---|---|---|---|---|---|
1st Algorithm | 1st Score | 1st Algorithm | 1st Score | 1st Algorithm | 1st Score | 1st Algorithm | 1st Score | |
Energy | ERF (47) | 0.4938 | BSHAP (13) | 0.5014 | BC (20) | 0.5428 | ERF (20) | 0.5567 |
Material | MSURF (34) | 0.5114 | BC (7) | 0.6503 | RFE (20) | 0.5188 | RFE (20) | 0.5824 |
Industrial | RFE (20) | 0.4933 | PI (13) | 0.5076 | MI (20) | 0.5182 | ELGBM (20) | 0.5926 |
Consumer Discretionary | VT (7) | 0.4906 | ERF (13) | 0.4858 | BSHAP (20) | 0.5051 | PI (20) | 0.5426 |
Consumer Staples | MSURF (20) | 0.4921 | SHAP (47) | 0.5032 | BSHAP (13) | 0.5349 | MSURF (13) | 0.5524 |
Health Care | ELGBM (7) | 0.4777 | VT (47) | 0.4892 | SHAP (7) | 0.5214 | MI (20) | 0.5434 |
Financial | PI (7) | 0.5403 | BSHAP(20) | 0.5322 | ELASSO (34) | 0.5511 | BSHAP (47) | 0.6153 |
IT | MI (7) | 0.5215 | MI (7) | 0.5220 | VT (13) | 0.5467 | RR (20) | 0.5792 |
Communication Services | BSHAP (20) | 0.4793 | RR (20) | 0.4995 | ELGBM (7) | 0.5467 | RFE (7) | 0.5689 |
Utilities | SHAP (20) | 0.4705 | ELGBM (20) | 0.5107 | MSURF (47) | 0.5467 | ELGBM (47) | 0.5745 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.; Jeon, J.; Jang, M.; Kim, S.; Lee, H.; Yoo, S.; Ahn, J. Developing a Dynamic Feature Selection System (DFSS) for Stock Market Prediction: Application to the Korean Industry Sectors. Appl. Sci. 2024, 14, 7314. https://doi.org/10.3390/app14167314
Kim W, Jeon J, Jang M, Kim S, Lee H, Yoo S, Ahn J. Developing a Dynamic Feature Selection System (DFSS) for Stock Market Prediction: Application to the Korean Industry Sectors. Applied Sciences. 2024; 14(16):7314. https://doi.org/10.3390/app14167314
Chicago/Turabian StyleKim, Woojung, Jiyoung Jeon, Minwoo Jang, Sanghoe Kim, Heesoo Lee, Sanghyuk Yoo, and Jaejoon Ahn. 2024. "Developing a Dynamic Feature Selection System (DFSS) for Stock Market Prediction: Application to the Korean Industry Sectors" Applied Sciences 14, no. 16: 7314. https://doi.org/10.3390/app14167314
APA StyleKim, W., Jeon, J., Jang, M., Kim, S., Lee, H., Yoo, S., & Ahn, J. (2024). Developing a Dynamic Feature Selection System (DFSS) for Stock Market Prediction: Application to the Korean Industry Sectors. Applied Sciences, 14(16), 7314. https://doi.org/10.3390/app14167314