Potential of Plant Stem Cells as Helpful Agents for Skin Disorders—A Narrative Review
Abstract
:1. Introduction
2. Methodology
3. Divide and Conquer: Harnessing Biotechnology for Plant Stem Cell Cultivation
4. Mechanistic Insights into the Skin Aging of Plant-Derived Stem Cells
4.1. Antioxidant Activity
4.2. Anti-Inflammatory Activity
4.3. Regulation of Gene Expression
4.4. Improving Cell Proliferation
5. Promising Agent for Skin Aging Treatment: Extracellular Vesicles
6. Large-Scale Production of Plant Cell Cultures
7. Limitations
8. Commercial Misconceptions
9. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campisi, J.; d’Adda Di Fagagna, F. Cellular Senescence: When Bad Things Happen to Good Cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Hayflick, L.; Moorhead, P.S. The Serial Cultivation of Human Diploid Cell Strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S.; Lee, H.-J.; Yoon, E.-J.; Lee, H.; Ji, Y.; Kim, Y.; Park, S.-J.; Kim, J.; Bae, S. Protective Effect of Iris germanica L. Rhizome-Derived Exosome against Oxidative-Stress-Induced Cellular Senescence in Human Epidermal Keratinocytes. Appl. Sci. 2023, 13, 11681. [Google Scholar] [CrossRef]
- Brüggen, M.; Stingl, G. Subcutaneous White Adipose Tissue: The Deepest Layer of the Cutaneous Immune Barrier. JDDG J. Dtsch. Dermatol. Ges. 2020, 18, 1225–1227. [Google Scholar] [CrossRef]
- Domaszewska-Szostek, A.; Puzianowska-Kuźnicka, M.; Kuryłowicz, A. Flavonoids in Skin Senescence Prevention and Treatment. Int. J. Mol. Sci. 2021, 22, 6814. [Google Scholar] [CrossRef]
- Pils, V.; Ring, N.; Valdivieso, K.; Lämmermann, I.; Gruber, F.; Schosserer, M.; Grillari, J.; Ogrodnik, M. Promises and Challenges of Senolytics in Skin Regeneration, Pathology and Ageing. Mech. Ageing Dev. 2021, 200, 111588. [Google Scholar] [CrossRef]
- Dańczak-Pazdrowska, A.; Gornowicz-Porowska, J.; Polańska, A.; Krajka-Kuźniak, V.; Stawny, M.; Gostyńska, A.; Rubiś, B.; Nourredine, S.; Ashiqueali, S.; Schneider, A.; et al. Cellular Senescence in Skin-related Research: Targeted Signaling Pathways and Naturally Occurring Therapeutic Agents. Aging Cell 2023, 22, e13845. [Google Scholar] [CrossRef]
- Lee, H.; Hong, Y.; Kim, M. Structural and Functional Changes and Possible Molecular Mechanisms in Aged Skin. Int. J. Mol. Sci. 2021, 22, 12489. [Google Scholar] [CrossRef]
- Debacq-Chainiaux, F.; Leduc, C.; Verbeke, A.; Toussaint, O. UV, Stress and Aging. Dermatoendocrinol. 2012, 4, 236–240. [Google Scholar] [CrossRef]
- Wang, D.; Amen, Y.; Elsbaey, M.; Nagata, M.; Matsumoto, M.; Wang, D.; Shimizu, K. Vanilla pompona Leaves and Stems as New Sources of Bioactive Compounds: The Therapeutic Potential for Skin Senescence. Planta Med. 2023, 89, 1259–1268. [Google Scholar] [CrossRef]
- Chaib, S.; Tchkonia, T.; Kirkland, J.L. Cellular Senescence and Senolytics: The Path to the Clinic. Nat. Med. 2022, 28, 1556–1568. [Google Scholar] [CrossRef]
- Lämmermann, I.; Terlecki-Zaniewicz, L.; Weinmüllner, R.; Schosserer, M.; Dellago, H.; De Matos Branco, A.D.; Autheried, D.; Sevcnikar, B.; Kleissl, L.; Berlin, I.; et al. Blocking Negative Effects of Senescence in Human Skin Fibroblasts with a Plant Extract. npj Aging Mech. Dis. 2018, 4, 4. [Google Scholar] [CrossRef]
- Kaur, J.; Farr, J.N. Cellular Senescence in Age-Related Disorders. Transl. Res. 2020, 226, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Weng, W.; Gao, R.; Liu, Y. New Insights for Cellular and Molecular Mechanisms of Aging and Aging-Related Diseases: Herbal Medicine as Potential Therapeutic Approach. Oxid. Med. Cell. Longev. 2019, 2019, 4598167. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.A.; Mikail, M.A.; Zamakshshari, N.H.; Mustafa, M.R.; Hashim, N.M.; Othman, R. Trends and Challenges in Phytotherapy and Phytocosmetics for Skin Aging. Saudi J. Biol. Sci. 2022, 29, 103363. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M. Plant Extracts as Skin Care and Therapeutic Agents. Int. J. Mol. Sci. 2023, 24, 15444. [Google Scholar] [CrossRef]
- Sharma, R.; Padwad, Y. Perspectives of the Potential Implications of Polyphenols in Influencing the Interrelationship between Oxi-Inflammatory Stress, Cellular Senescence and Immunosenescence during Aging. Trends Food Sci. Technol. 2020, 98, 41–52. [Google Scholar] [CrossRef]
- Woo, J.; Shin, S.; Cho, E.; Ryu, D.; Garandeau, D.; Chajra, H.; Fréchet, M.; Park, D.; Jung, E. Senotherapeutic-like Effect of Silybum Marianum Flower Extract Revealed on Human Skin Cells. PLoS ONE 2021, 16, e0260545. [Google Scholar] [CrossRef]
- Park, D.E.; Adhikari, D.; Pangeni, R.; Panthi, V.K.; Kim, H.J.; Park, J.W. Preparation and Characterization of Callus Extract from Pyrus pyrifolia and Investigation of Its Effects on Skin Regeneration. Cosmetics 2018, 5, 71. [Google Scholar] [CrossRef]
- González-Minero, F.J.; Bravo-Díaz, L. The Use of Plants in Skin-Care Products, Cosmetics and Fragrances: Past and Present. Cosmetics 2018, 5, 50. [Google Scholar] [CrossRef]
- Bimonte, M.; Carola, A.; Tito, A.; Barbulova, A.; De Lucia, A.; Del Piaz, F.; Apone, F.; Colucci, G. Cold Stress Damage, Banished: Daphne Odora Extract Improves Skin Moisture and Healing. Cosmet. Toilet. 2018, 133. [Google Scholar]
- Cho, W.K.; Kim, H.-I.; Kim, S.-Y.; Seo, H.H.; Song, J.; Kim, J.; Shin, D.S.; Jo, Y.; Choi, H.; Lee, J.H.; et al. Anti-Aging Effects of Leontopodium alpinum (Edelweiss) Callus Culture Extract through Transcriptome Profiling. Genes 2020, 11, 230. [Google Scholar] [CrossRef]
- Moon, S.H.; Kim, E.; Kim, H.-I.; Kim, S.-Y.; Seo, H.-H.; Lee, J.-H.; Lee, M.-S.; Lee, S.-K.; Moh, S.-H.; Bae, S. Skin-Whitening Effect of a Callus Extract of Nelumbo nucifera Isolate Haman. Plants 2023, 12, 3923. [Google Scholar] [CrossRef]
- Schürch, C.; Blum, P.; Zülli, F. Potential of Plant Cells in Culture for Cosmetic Application. Phytochem. Rev. 2007, 7, 599–605. [Google Scholar] [CrossRef]
- Dal Toso, R.; Melandri, F. Sustainable Sourcing of Natural Food Ingredients by Plant Cell Cultures. Agro Food Ind. Hi-Tech 2011, 22, 30–32. [Google Scholar]
- Spychalski, G. Determinants of Growing Herbs in Polish Agriculture. Herba Pol. 2013, 59, 5–18. [Google Scholar] [CrossRef]
- Kikowska, M.T.B.; Nahorska, A. Potential of Plant Cell Cultures as a Source of Bioactive Compounds for Cosmetic Applications. Pol. J. Cosmetol. 2015, 18, 170–175. (In Polish) [Google Scholar]
- Warghat, A.R.; Thakur, K.; Sood, A. Plant Stem Cells: What We Know and What Is Anticipated. Mol. Biol. Rep. 2018, 45, 2897–2905. [Google Scholar] [CrossRef]
- Szymanowska, A.; Gornowicz, A.; Bielawska, A.; Bielawski, K. Plant Stem Cells and Their Application in Cosmetology and Regenerative Medicine. Prospects Pharm. Sci. 2019, 17, 36–42. (In Polish) [Google Scholar] [CrossRef]
- Laux, T. The Stem Cell Concept in Plants. Cell 2003, 113, 281–283. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, N. On the Way to Commercializing Plant Cell Culture Platform for Biopharmaceuticals: Present Status and Prospect. Pharm. Bioprocess. 2014, 2, 499–518. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Sugimoto, K.; Iwase, A. Plant Callus: Mechanisms of Induction and Repression. Plant Cell 2013, 25, 3159–3173. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, V.; Slavov, A.; Vasileva, I.; Pavlov, A. Plant Cell Culture as Emerging Technology for Production of Active Cosmetic Ingredients. Eng. Life Sci. 2018, 18, 779–798. [Google Scholar] [CrossRef]
- Kwon, Y.-W.; Lee, S.-H.; Kim, A.-R.; Kim, B.J.; Park, W.-S.; Hur, J.; Jang, H.; Yang, H.-M.; Cho, H.-J.; Kim, H.-S. Plant Callus-Derived Shikimic Acid Regenerates Human Skin through Converting Human Dermal Fibroblasts into Multipotent Skin-Derived Precursor Cells. Stem Cell Res. Ther. 2021, 12, 346. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Farkya, S.; Srivastava, A.K.; Bisaria, V.S. Bioprocess Considerations for Production of Secondary Metabolites by Plant Cell Suspension Cultures. Biotechnol. Bioprocess Eng. 2002, 7, 138–149. [Google Scholar] [CrossRef]
- Gonçalves, S.; Romano, A. Production of Plant Secondary Metabolites by Using Biotechnological Tools. In Secondary Metabolites—Sources and Applications; IntechOpen: Rijeka, Croatia, 2018; pp. 81–99. [Google Scholar]
- Imseng, N.; Schillberg, S.; Schürch, C.; Schmid, D.; Schütte, K.; Gorr, G.; Eibl, D.; Eibl, R. Suspension Culture of Plant Cells under Heterotrophic Conditions. Ind. Scale Suspens. Cult. Living Cells 2014, 2014, 224–258. [Google Scholar]
- Marchev, A.S.; Georgiev, M.I. Plant In Vitro Systems as a Sustainable Source of Active Ingredients for Cosmeceutical Application. Molecules 2020, 25, 2006. [Google Scholar] [CrossRef] [PubMed]
- Wawrosch, C.; Zotchev, S.B. Production of Bioactive Plant Secondary Metabolites through In Vitro Technologies—Status and Outlook. Appl. Microbiol. Biotechnol. 2021, 105, 6649–6668. [Google Scholar] [CrossRef]
- Pietrosiuk, A.; Budzianowska, A.; Budzianowski, J.; Ekiert, H.; Jeziorek, M.; Kawiak, A.; Kikowska, M.; Krauze-Baranowska, M.; Królicka, A.; Kuźma, Ł.; et al. Polish Achievements in Bioactive Compound Production from In Vitro Plant Cultures. Acta Soc. Bot. Pol. 2022, 91, 9110. [Google Scholar] [CrossRef]
- Ozyigit, I.I.; Dogan, I.; Hocaoglu-Ozyigit, A.; Yalcin, B.; Erdogan, A.; Yalcin, I.E.; Cabi, E.; Kaya, Y. Production of Secondary Metabolites Using Tissue Culture-Based Biotechnological Applications. Front. Plant Sci. 2023, 14, 1132555. [Google Scholar] [CrossRef]
- Barbulova, A.; Apone, F.; Colucci, G. Plant Cell Cultures as Source of Cosmetic Active Ingredients. Cosmetics 2014, 1, 94–104. [Google Scholar] [CrossRef]
- Moruś, M.; Baran, M.; Rost-Roszkowska, M.; Skotnicka-Graca, U. Plant Stem Cells as Innovation in Cosmetics. Acta Pol. Pharm. Drug Res. 2014, 71, 701–707. [Google Scholar]
- Trehan, S.; Michniak-Kohn, B.; Beri, K. Plant Stem Cells in Cosmetics: Current Trends and Future Directions. Future Sci. OA 2017, 3, FSO226. [Google Scholar] [CrossRef]
- Korkina, L.G.; Mayer, W.; De Luca, C. Meristem Plant Cells as a Sustainable Source of Redox Actives for Skin Rejuvenation. Biomolecules 2017, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Eibl, R.; Meier, P.; Stutz, I.; Schildberger, D.; Hühn, T.; Eibl, D. Plant Cell Culture Technology in the Cosmetics and Food Industries: Current State and Future Trends. Appl. Microbiol. Biotechnol. 2018, 102, 8661–8675. [Google Scholar] [CrossRef] [PubMed]
- Miastkowska, M.; Sikora, E. Anti-Aging Properties of Plant Stem Cell Extracts. Cosmetics 2018, 5, 55. [Google Scholar] [CrossRef]
- Kim, W.S.; Seo, J.H.; Lee, J.-I.; Ko, E.-S.; Cho, S.-M.; Kang, J.-R.; Jeong, J.-H.; Jeong, Y.J.; Kim, C.Y.; Cha, J.-D.; et al. The Metabolite Profile in Culture Supernatant of Aster yomena Callus and Its Anti-Photoaging Effect in Skin Cells Exposed to UVB. Plants 2021, 10, 659. [Google Scholar] [CrossRef]
- Figueiredo Filho, D.; FSEDV, F.; Rodriguez, A.; Vale, P.; Do Egito, E.; Marcal, H. Mulateiro (Calycophyllum spruceanum) Stem Cell Extract: An Evaluation of Its Anti-Aging Effect on Human Adult Fibroblasts. Int. J. Sci. Eng. Res. 2016, 7, 87–90. [Google Scholar]
- Buranasudja, V.; Rani, D.; Malla, A.; Kobtrakul, K.; Vimolmangkang, S. Insights into Antioxidant Activities and Anti-Skin-Aging Potential of Callus Extract from Centella asiatica (L.). Sci. Rep. 2021, 11, 13459. [Google Scholar] [CrossRef]
- Kikowska, M.A.; Chmielewska, M.; W\textbackslashlodarczyk, A.; Studzińska-Sroka, E.; Żuchowski, J.; Stochmal, A.; Kotwicka, M.; Thiem, B. Effect of Pentacyclic Triterpenoids-Rich Callus Extract of Chaenomeles japonica (Thunb.) Lindl. Ex Spach on Viability, Morphology, and Proliferation of Normal Human Skin Fibroblasts. Molecules 2018, 23, 3009. [Google Scholar] [CrossRef]
- Adhikari, D.; Panthi, V.K.; Pangeni, R.; Kim, H.J.; Park, J.W. Preparation, Characterization, and Biological Activities of Topical Anti-Aging Ingredients in a Citrus junos Callus Extract. Molecules 2017, 22, 2198. [Google Scholar] [CrossRef] [PubMed]
- Laneri, S.; Dini, I.; Tito, A.; Di Lorenzo, R.; Bimonte, M.; Tortora, A.; Zappelli, C.; Angelillo, M.; Bernardi, A.; Sacchi, A.; et al. Plant Cell Culture Extract of Cirsium eriophorum with Skin Pore Refiner Activity by Modulating Sebum Production and Inflammatory Response. Phytother. Res. 2021, 35, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Guidoni, M.; de Sousa Júnior, A.D.; Aragão, V.P.M.; de Melo Costa Pereira, T.; Dos Santos, W.C.; Monteiro, F.C.; Guimarães, M.C.C.; Fronza, M. Liposomal Stem Cell Extract Formulation from Coffea canephora Shows Outstanding Anti-Inflammatory Activity, Increased Tissue Repair, Neocollagenesis and Neoangiogenesis. Arch. Dermatol. Res. 2023, 315, 491–503. [Google Scholar] [CrossRef]
- Guidoni, M.; Sousa Júnior, A.D.d.; Aragão, V.P.M.; Silva, E.M.V.T.; Barth, T.; Clarindo, W.R.; Endringer, D.C.; Scherer, R.; Fronza, M. Plant Stem Cell Extract from Coffea Canephora Shows Antioxidant, Anti-Inflammatory, and Skin Regenerative Properties Mediated by Suppression of Nuclear Factor-κB. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Medicas E Biol. 2023, 56, e12849. [Google Scholar] [CrossRef]
- Bimonte, M.; Tito, A.; Carola, A.; Barbulova, A.; Apone, F.; Colucci, G.; Cucchiara, M.; Hill, J. Dolichos Cell Culture Extract for Protection against UV Damage. Cosmet Toilet 2014, 129, 46–56. [Google Scholar]
- Carvajal, F.; Duran, C.; Aquea, F. Effect of Alerce (Fitzroya cupressoides) Cell Culture Extract on Wound Healing Repair in a Human Keratinocyte Cell Line. J. Cosmet. Dermatol. 2019, 19, 1254–1259. [Google Scholar] [CrossRef]
- Cho, W.K.; Kim, S.-Y.; Jang, S.J.; Lee, S.; Kim, H.-I.; Kim, E.; Lee, J.H.; Choi, S.S.; Moh, S.H. Comparative Analysis of Water Extracts from Roselle (Hibiscus sabdariffa L.) Plants and Callus Cells: Constituents, Effects on Human Skin Cells, and Transcriptome Profiles. Int. J. Mol. Sci. 2023, 24, 10853. [Google Scholar] [CrossRef]
- Kim, H.; Jang, Y.; Ryu, J.; Seo, D.; Lee, S.; Choi, S.; Kim, D.; Moh, S.; Shin, J. The Dipeptide Gly-Pro (GP), Derived from Hibiscus sabdariffa, Exhibits Potent Antifibrotic Effects by Regulating the TGF-Β1-ATF4-Serine/Glycine Biosynthesis Pathway. Int. J. Mol. Sci. 2023, 24, 13616. [Google Scholar] [CrossRef]
- Di Martino, O.; Tito, A.; De Lucia, A.; Cimmino, A.; Cicotti, F.; Apone, F.; Colucci, G.; Calabrò, V. Hibiscus syriacus Extract from an Established Cell Culture Stimulates Skin Wound Healing. BioMed Res. Int. 2017, 2017, 7932019. [Google Scholar] [CrossRef]
- Abbasi, B.H.; Siddiquah, A.; Tungmunnithum, D.; Bose, S.; Younas, M.; Garros, L.; Drouet, S.; Giglioli-Guivarc’h, N.; Hano, C. Isodon rugosus (Wall. Ex Benth.) Codd In Vitro Cultures: Establishment, Phytochemical Characterization and In Vitro Antioxidant and Anti-Aging Activities. Int. J. Mol. Sci. 2019, 20, 452. [Google Scholar] [CrossRef]
- Kim, M.-J.; Ko, H.; Kim, J.-Y.; Kim, H.-J.; Kim, H.-Y.; Cho, H.-E.; Cho, H.-D.; Seo, W.-S.; Kang, H.-C. Improvement in Yield of Extracellular Vesicles Derived from Edelweiss Callus Treated with LED Light and Enhancement of Skin Anti-Aging Indicators. Curr. Issues Mol. Biol. 2023, 45, 10159–10178. [Google Scholar] [CrossRef]
- Bose, S.; Munsch, T.; Lanoue, A.; Garros, L.; Tungmunnithum, D.; Messaili, S.; Destandau, E.; Billet, K.; St-Pierre, B.; Clastre, M.; et al. UPLC-HRMS Analysis Revealed the Differential Accumulation of Antioxidant and Anti-Aging Lignans and Neolignans in In Vitro Cultures of Linum usitatissimum L. Front. Plant Sci. 2020, 11, 508658. [Google Scholar] [CrossRef]
- Lee, H.; Kim, D.; Lim, S.-M.; Kwon, S. Rice Callus Extracts for Enhancing Skin Wound Healing. Biotechnol. Bioprocess Eng. 2017, 22, 352–358. [Google Scholar] [CrossRef]
- Vichit, W.; Saewan, N. Anti-Oxidant and Anti-Aging Activities of Callus Culture from Three Rice Varieties. Cosmetics 2022, 9, 79. [Google Scholar] [CrossRef]
- Rani, D.; Buranasudja, V.; Kobtrakul, K.; De-Eknamkul, W.; Vimolmangkang, S. Elicitation of Pueraria candollei Var. Mirifica Suspension Cells Promises Antioxidant Potential, Implying Antiaging Activity. Plant Cell Tissue Organ Cult. 2021, 145, 29–41. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, J.W. Anti-Aging Activities of Pyrus pyrifolia var culta Plant Callus Extract. Trop. J. Pharm. Res. 2017, 16, 1579–1588. [Google Scholar] [CrossRef]
- Tito, A.; Bimonte, M.; Carola, A.; De Lucia, A.; Barbulova, A.; Tortora, A.; Colucci, G.; Apone, F. An Oil-soluble Extract of Rubus idaeus Cells Enhances Hydration and Water Homeostasis in Skin Cells. Int. J. Cosmet. Sci. 2015, 37, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Pressi, G.; Bertaiola, O.; Guarnerio, C.; Barbieri, E.; Rigillo, G.; Governa, P.; Biagi, M.; Guzzo, F.; Semenzato, A. In Vitro Cell Culture of Rhus coriaria L.: A Standardized Phytocomplex Rich of Gallic Acid Derivatives with Antioxidant and Skin Repair Activity. Cosmetics 2022, 9, 12. [Google Scholar] [CrossRef]
- Kim, H.-R.; Kim, S.; Jie, E.Y.; Kim, S.J.; Ahn, W.S.; Jeong, S.-I.; Yu, K.-Y.; Kim, S.W.; Kim, S.-Y. Effects of Tiarella polyphylla D. Don Callus Extract on Photoaging in Human Foreskin Fibroblasts Hs68 Cells. Nat. Prod. Commun. 2021, 16, 1934578X2110169. [Google Scholar] [CrossRef]
- Chalageri, G.; Dhananjaya, S.P.; Raghavendra, P.; Sharath Kumar, L.M.; Babu, U.V.; Varma, S.R. Substituting Plant Vegetative Parts with Callus Cell Extracts: Case Study with Woodfordia fruticosa Kurz.—A Potent Ingredient in Skin Care Formulations. S. Afr. J. Bot. 2019, 123, 351–360. [Google Scholar] [CrossRef]
- Schmid, D.; Schürch, C.; Blum, P.; Belser, E.; Zülli, F. Plant Stem Cell Extract for Longevity of Skin and Hair. SÖFW-J. 2008, 134, 30–35. [Google Scholar]
- Tobin, D.J. Introduction to Skin Aging. J. Tissue Viability 2017, 26, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.H.; Lee, Y.H.; Rho, N.-K.; Park, K.Y. Skin Aging from Mechanisms to Interventions: Focusing on Dermal Aging. Front. Physiol. 2023, 14, 1195272. [Google Scholar] [CrossRef] [PubMed]
- Varga, R.; Gross, J. Oxidative Stress Status and Its Relationship to Skin Aging. Plast. Aesthetic Nurs. 2023, 43, 141–148. [Google Scholar] [CrossRef]
- Wölfle, U.; Seelinger, G.; Bauer, G.; Meinke, M.C.; Lademann, J.; Schempp, C.M. Reactive Molecule Species and Antioxidative Mechanisms in Normal Skin and Skin Aging. Skin Pharmacol. Physiol. 2014, 27, 316–332. [Google Scholar] [CrossRef]
- Tokuhara, C.K.; Santesso, M.R.; Oliveira, G.S.N.D.; Ventura, T.M.D.S.; Doyama, J.T.; Zambuzzi, W.F.; Oliveira, R.C.D. Updating the Role of Matrix Metalloproteinases in Mineralized Tissue and Related Diseases. J. Appl. Oral Sci. 2019, 27, e20180596. [Google Scholar] [CrossRef]
- Freitas-Rodríguez, S.; Folgueras, A.R.; López-Otín, C. The Role of Matrix Metalloproteinases in Aging: Tissue Remodeling and Beyond. Biochim. Biophys. Acta BBA Mol. Cell Res. 2017, 1864, 2015–2025. [Google Scholar] [CrossRef]
- Reilly, D.M.; Lozano, J. Skin Collagen through the Lifestages: Importance for Skin Health and Beauty. Plast. Aesthetic Res. 2021, 8, 2. [Google Scholar] [CrossRef]
- Petruk, G.; Del Giudice, R.; Rigano, M.M.; Monti, D.M. Antioxidants from Plants Protect against Skin Photoaging. Oxid. Med. Cell. Longev. 2018, 2018, 1454936. [Google Scholar] [CrossRef]
- De Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; Da Silva De Lucca, R.A. Polyphenols as Natural Antioxidants in Cosmetics Applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as Active Ingredients for Cosmetic Products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Addor, F.A.S. Antioxidants in Dermatology. An. Bras. Dermatol. 2017, 92, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Pullar, J.; Carr, A.; Vissers, M. The Roles of Vitamin C in Skin Health. Nutrients 2017, 9, 866. [Google Scholar] [CrossRef] [PubMed]
- Dattola, A.; Silvestri, M.; Bennardo, L.; Passante, M.; Scali, E.; Patruno, C.; Nisticò, S.P. Role of Vitamins in Skin Health: A Systematic Review. Curr. Nutr. Rep. 2020, 9, 226–235. [Google Scholar] [CrossRef]
- Aparecida Sales De Oliveira Pinto, C.; Elyan Azevedo Martins, T.; Miliani Martinez, R.; Batello Freire, T.; Valéria Robles Velasco, M.; Rolim Baby, A. Vitamin E in Human Skin: Functionality and Topical Products. In Biochemistry; Erkekoglu, P., Scherer Santos, J., Eds.; IntechOpen: London, UK, 2021; Volume 22, ISBN 978-1-83968-837-9. [Google Scholar]
- Stahl, W.; Sies, H. Antioxidant Activity of Carotenoids. Mol. Aspects Med. 2003, 24, 345–351. [Google Scholar] [CrossRef]
- Zerres, S.; Stahl, W. Carotenoids in Human Skin. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2020, 1865, 158588. [Google Scholar] [CrossRef]
- Wang, A.S.; Dreesen, O. Biomarkers of Cellular Senescence and Skin Aging. Front. Genet. 2018, 9, 247. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, Y.; Gu, Y.; Yang, F.; Hao, N. A Novel Isothermal Amplification Strategy for Rapid and Sensitive Detection of Matrix Metalloproteinase 2 Using a Bipedal DNA Walker in Anti-Aging Research. Sens. Actuators B Chem. 2023, 397, 134650. [Google Scholar] [CrossRef]
- Cancemi, P.; Aiello, A.; Accardi, G.; Caldarella, R.; Candore, G.; Caruso, C.; Ciaccio, M.; Cristaldi, L.; Di Gaudio, F.; Siino, V.; et al. The Role of Matrix Metalloproteinases (MMP-2 and MMP-9) in Ageing and Longevity: Focus on Sicilian Long-Living Individuals (LLIs). Mediators Inflamm. 2020, 2020, 8635158. [Google Scholar] [CrossRef]
- Ji, S.H.; Akter, M.; Ko, E.Y.; Choi, E.H.; Keum, Y.S.; Han, I. Enhancing Antioxidant Activities and Anti-Aging Effect of Rice Stem Cell Extracts by Plasma Treatment. Appl. Sci. 2022, 12, 2903. [Google Scholar] [CrossRef]
- El Ayadi, A.; Jay, J.W.; Prasai, A. Current Approaches Targeting the Wound Healing Phases to Attenuate Fibrosis and Scarring. Int. J. Mol. Sci. 2020, 21, 1105. [Google Scholar] [CrossRef] [PubMed]
- Demaria, M.; Ohtani, N.; Youssef, S.A.; Rodier, F.; Toussaint, W.; Mitchell, J.R.; Laberge, R.-M.; Vijg, J.; Van Steeg, H.; Dollé, M.E.T.; et al. An Essential Role for Senescent Cells in Optimal Wound Healing through Secretion of PDGF-AA. Dev. Cell 2014, 31, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Resnik, S.R.; Egger, A.; Abdo Abujamra, B.; Jozic, I. Clinical Implications of Cellular Senescence on Wound Healing. Curr. Dermatol. Rep. 2020, 9, 286–297. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Z.; Zhang, Y.; Zhao, Z.; Zhu, H.; Yue, C. Extracellular Vesicle: A Magic Lamp to Treat Skin Aging, Refractory Wound, and Pigmented Dermatosis? Front. Bioeng. Biotechnol. 2022, 10, 1043320. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Wu, S.-N.; Zhang, L.-P.; Zhao, X.-S.; Li, Y.; Yang, Q.-Y.; Yuan, R.-Y.; Liu, J.-L.; Mao, H.-J.; Zhu, N.-W. Stem Cell-Derived Exosomes: A New Method for Reversing Skin Aging. Tissue Eng. Regen. Med. 2022, 19, 961–968. [Google Scholar] [CrossRef]
- Li, A.; Li, D.; Gu, Y.; Liu, R.; Tang, X.; Zhao, Y.; Qi, F.; Wei, J.; Liu, J. Plant-Derived Nanovesicles: Further Exploration of Biomedical Function and Application Potential. Acta Pharm. Sin. B 2023, 13, 3300–3320. [Google Scholar] [CrossRef]
- Kim, M.; Jang, H.; Kim, W.; Kim, D.; Park, J.H. Therapeutic Applications of Plant-Derived Extracellular Vesicles as Antioxidants for Oxidative Stress-Related Diseases. Antioxidants 2023, 12, 1286. [Google Scholar] [CrossRef]
- Bogdanowicz, P.; Roullet, N.; Bensadoun, P.; Bessou-Touya, S.; Lemaitre, J.; Duplan, H. Reduction of Senescence-associated Secretory Phenotype and Exosome-shuttled miRNAs by Haritaki Fruit Extract in Senescent Dermal Fibroblasts. Int. J. Cosmet. Sci. 2023, 45, 488–499. [Google Scholar] [CrossRef]
- Kim, M.K.; Choi, Y.C.; Cho, S.H.; Choi, J.S.; Cho, Y.W. The Antioxidant Effect of Small Extracellular Vesicles-Derived from Aloe vera Peels for Wound Healing. Tissue Eng. Regen. Med. 2021, 18, 561–571. [Google Scholar] [CrossRef]
- Won, Y.J.; Lee, E.; Min, S.Y.; Cho, B.S. Biological Function of Exosome-like Particles Isolated from Rose (Rosa Damascena) Stem Cell Culture Supernatant. bioRxiv 2023. bioRxiv:2023.10.17.562840. [Google Scholar]
- Qiu, G.; Zheng, G.; Ge, M.; Wang, J.; Huang, R.; Shu, Q.; Xu, J. Functional Proteins of Mesenchymal Stem Cell-Derived Extracellular Vesicles. Stem Cell Res. Ther. 2019, 10, 359. [Google Scholar] [CrossRef]
- Ng, C.Y.; Chai, J.Y.; Foo, J.B.; Mohamad Yahaya, N.H.; Yang, Y.; Ng, M.H.; Law, J.X. Potential of Exosomes as Cell-Free Therapy in Articular Cartilage Regeneration: A Review. Int. J. Nanomed. 2021, 16, 6749–6781. [Google Scholar] [CrossRef]
- Jo, C.S.; Myung, C.H.; Yoon, Y.C.; Ahn, B.H.; Min, J.W.; Seo, W.S.; Lee, D.H.; Kang, H.C.; Heo, Y.H.; Choi, H.; et al. The Effect of Lactobacillus plantarum Extracellular Vesicles from Korean Women in Their 20s on Skin Aging. Curr. Issues Mol. Biol. 2022, 44, 526–540. [Google Scholar] [CrossRef] [PubMed]
- Ruffoni, B.; Pistelli, L.; Bertoli, A.; Pistelli, L. Plant Cell Cultures: Bioreactors for Industrial Production. Adv. Exp. Med. Biol. 2010, 698, 203–221. [Google Scholar] [CrossRef]
- Valdiani, A.; Hansen, O.K.; Nielsen, U.B.; Johannsen, V.K.; Shariat, M.; Georgiev, M.I.; Omidvar, V.; Ebrahimi, M.; Tavakoli Dinanai, E.; Abiri, R. Bioreactor-Based Advances in Plant Tissue and Cell Culture: Challenges and Prospects. Crit. Rev. Biotechnol. 2019, 39, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Nohynek, L.; Bailey, M.; Tähtiharju, J.; Seppänen-Laakso, T.; Rischer, H.; Oksman-Caldentey, K.; Puupponen-Pimiä, R. Cloudberry (Rubus Chamaemorus) Cell Culture with Bioactive Substances: Establishment and Mass Propagation for Industrial Use. Eng. Life Sci. 2014, 14, 667–675. [Google Scholar] [CrossRef]
- Eibl, R.; Eibl, D. Design of Bioreactors Suitable for Plant Cell and Tissue Cultures. Phytochem. Rev. 2008, 7, 593–598. [Google Scholar] [CrossRef]
- Eibl, R.; Werner, S.; Eibl, D. Bag Bioreactor Based on Wave-Induced Motion: Characteristics and Applications. In Disposable Bioreactors; Eibl, R., Eibl, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 115, pp. 55–87. ISBN 978-3-642-01871-8. [Google Scholar] [CrossRef]
- Terrier, B.; Courtois, D.; Hénault, N.; Cuvier, A.; Bastin, M.; Aknin, A.; Dubreuil, J.; Pétiard, V. Two New Disposable Bioreactors for Plant Cell Culture: The Wave and Undertow Bioreactor and the Slug Bubble Bioreactor. Biotechnol. Bioeng. 2007, 96, 914–923. [Google Scholar] [CrossRef]
- Georgiev, M.I.; Eibl, R.; Zhong, J.-J. Hosting the Plant Cells In Vitro: Recent Trends in Bioreactors. Appl. Microbiol. Biotechnol. 2013, 97, 3787–3800. [Google Scholar] [CrossRef]
- Freitas, L.; Valadares, L.D.A.; Camozzi, M.; De Oliveira, P.; Ferreira Machado, M.; Lima, F. Animal Models in the Neurotoxicology of 2,4-D. Hum. Exp. Toxicol. 2019, 38, 1178–1182. [Google Scholar] [CrossRef]
- Islam, F.; Wang, J.; Farooq, M.A.; Khan, M.S.S.; Xu, L.; Zhu, J.; Zhao, M.; Muños, S.; Li, Q.X.; Zhou, W. Potential Impact of the Herbicide 2,4-Dichlorophenoxyacetic Acid on Human and Ecosystems. Environ. Int. 2018, 111, 332–351. [Google Scholar] [CrossRef]
- Muselikova, K.; Mouralova, K. Synthetic Auxin Herbicide 2,4-D and Its Influence on a Model BY-2 Suspension. Mol. Biol. Rep. 2024, 51, 444. [Google Scholar] [CrossRef]
- Nembo, E.N.; Hescheler, J.; Nguemo, F. Stem Cells in Natural Product and Medicinal Plant Drug Discovery—An Overview of New Screening Approaches. Biomed. Pharmacother. 2020, 131, 110730. [Google Scholar] [CrossRef]
- Miele, L. Plants as Bioreactors for Biopharmaceuticals: Regulatory Considerations. Trends Biotechnol. 1997, 15, 45–50. [Google Scholar] [CrossRef]
- Rana, B.K.; Yadav, D.; Yadav, S. Strategic Association for Quality Excellence: Coordination Between GMP, GLP, GCP, Metrology, QC, and QA. In Handbook of Quality System, Accreditation and Conformity Assessment; Bhatnagar, A., Yadav, S., Achanta, V., Harmes-Liedtke, U., Rab, S., Eds.; Springer Nature: Singapore, 2024; pp. 1–21. ISBN 978-981-9946-37-2. [Google Scholar]
Species | Common Name | Explant | Culture Type | Systems | Medium | Compounds | Biological Assays | Biological Activities Associated with Age-Related Skin Senescence | Ref |
---|---|---|---|---|---|---|---|---|---|
Aster yomena (Kitam.) Honda (Asteraceae) | Japanese aster | Root | Callus and cell suspension | Bioreactor | MS + 1 mg/L 2,4-D | flavonoids (robustic acid, 3,5-Di-O-methyl-8-prenylafzelechin-4beta-ol) | in vitro using keratinocytes | inhibits elastase and MMP-1, promotes type I procollagen synthesis, anti-inflammatory (inhibition of TNF-α, IL-8, and IL-1β), antioxidant activity | [48] |
Calycophyllum spruceanum (Benth.) Hook.f. ex K.Schum. (Rubiaceae) | Mulateiro | Seeding | Callus | Flask | MS + 1 mg/L NAA + 1 mg/L BAP | not specified | in vitro using fibroblasts | antioxidant activity and anti-senescence effect against oxidative damage | [49] |
Centella asiatica (L.) Urb (Apiaceae) | Asiatic pennywort | Seedling | Callus | Bioreactor | MS + 1 mg/L NAA + 1 mg/L BAP | not specified | in vitro using fibroblasts | inhibits MMP-9 expression, antioxidant activity | [50] |
Chaenomeles japonica Lindl. ex Spach (Rosaceae) | Flowering quince, he yuan zi | Leaf | Callus | Flask | MS + 1 mg/L 2,4-D + 0.1 mg/L KIN | pentacyclic triterpenoids, flavonoids | in vitro using fibroblasts | antioxidant activity and stimulates fibroblast proliferation | [51] |
Citrus junos Siebold ex Tanaka (Rutaceae) | Yuzu | Leaf, flower, seed | Callus and cell suspension | Flask | MS + 2 mg/L Picloram | phenolic compounds (mainly p-hydroxycinnamoylmalic acid) | in vitro using fibroblasts | inhibits the activity of tyrosinase and the biosynthesis of melanin, promotes fibroblast proliferation and the synthesis of procollagen, regenerative activity, moderate antioxidant activity | [52] |
Cirsium eriophorum (L.) Scop. (Asteraceae) | Woolly thistle | Leaf | Cell suspension | Flask | B5 + phytohormones | polyphenols | in vitro fibroblasts and keratinocytes, in vivo | regulates essential markers (5α-reductase and trypsin-like serine protease Kallikrein 5) associated with sebum secretion and pore enlargements | [53] |
Coffea canephora Pierre ex A.Froehner (Rubiaceae) | Robusta coffee | Leaf | Cell suspension | Flask | ½ MS salt + B5 vitamins + 2 mg/L 2,4-D + 1 mg/L BAP | not specified | in vivo | enhances wound healing, facilitates extracellular matrix production, regulates the inflammatory response, and stimulates neovascularization. | [54] |
Callus and cell suspension | Flask | not specified | flavonoids (catechin gallate, rutin), phenolic acids (caffeic acid, rosmarinic acid) | in vitro using fibroblasts | inhibits the NF-ĸB signaling pathway, reduces the production of cytokines (IL-6, TNF-α), increases the proliferation and migration of fibroblasts, and antioxidant activity | [55] | |||
Daphne odora Thunb. (Thymelaeaceae) | Jinchoge, winter daphne | Leaf | Cell suspension | Flask | B5 + 1 mg/L 2,4-D + 0.1 mg/L KIN | flavonoid (kaempferol and glucosidic derivatives, luteolin, daphnodorins), lignans (wikstromol, pinoresinol, and lariciresinol) | in vitro using fibroblasts and keratinocytes, in vivo | modulates the sebum regulator 5α reductase 1, inhibits the pro-inflammatory cytokines IL-1β and IL-8 and TNF-α, increases membrane permeability and nutrient delivery and accelerates the wound healing capacity by inducing actin and fibronectin synthesis | [21] |
Dolichos biflorus L. (Fabaceae) | Catjang, sow-pea | Leaf | Cell suspension | Flask | B5 + 1 mg/L 2,4-D + 0.1 mg/L KIN | isoflavones | in vitro using fibroblasts and keratinocytes, in vivo | prevents damage on a cellular level by decreasing the UVB-induced interleukin expression, reduces the UVA-induced expression of MMP-1 and MMP-3 enzymes | [56] |
Fitzroya cupressoides (Molina) I.M.Johnst (Cupressaceae) | Alerce | Needle | Callus | Flask | ½ LP + 1.5 mg/L 2,4-D + 0.75 mg/L of BAP + 1% sucrose | not specified | in vitro using fibroblasts and melanocytes | stimulates cell division in human skin epidermal cells in wound repair mechanism | [57] |
Hibiscus sabdariffa L. (Malvaceae) | Red-sorrel, roselle, sereni | Seeding | Callus | Flask | MS + 1 mg/L 2,4-D | peptides | in vitro using keratinocytes | anti-melanogenic effects, functions for skin barrier, antioxidant activity, promotes healing of radiation-injured skin cells | [58] |
Leaf | Callus | Flask | not specified | dipeptide | in vitro using fibroblasts | exhibits potent anti-fibrotic effects | [59] | ||
Hibiscus syriacus L. (Malvaceae) | Rose of Sharon | Leaf | Cell suspension | Flask | B5 + 1 mg/L 2,4-D + 0.1 mg/L KIN | flavonoids, coumarins, naphthalene carbaldehyde | in vitro fibroblasts and keratinocytes | accelerates the wound healing activity (epithelium formation and fibronectin production), increases the expression of genes involved in skin hydration and homeostasis | [60] |
Isodon rugosus (Wall. ex Benth.) Codd (Lamiaceae) | Deciduous shrub | Stem, leaf | Callus | Flask | MS + NAA or TDZ or BAP | pentacyclic triterpenoids (plectranthoic acid, oleanolic acid, betulinic acid), phenolic acids (caffeic acid, rosmarinic acid) | in vitro | inhibits degradation of collagen, elastase, hyaluronic acid melanin production, antioxidant activity | [61] |
Leontopodium alpinum Colmeiro ex Willk. & Lange (Asteraceae) | Edelweiss | Leaf | Cell suspension | Bioreactor | MS + BAP + 2,4-D | not specified | in vitro using fibroblasts and keratinocytes | decreases COX-2 and iNOS gene expression, antioxidant activity, anti-wrinkle activity | [22] |
Stem, leaf | Cell suspension | Flask | MS + 0.3 mg/L 2,4-D + 0.5 mg/L BAP | extracellular vesicles | in vitro using fibroblast, keratinocytes and murine-derived melanoma | antioxidant activity, reducing melanin production, increasing filaggrin, aquaporin 2, and collagen production | [62] | ||
Linum usitatissimum L. (Linaceae) | Flax | Hypocotyl, cotyledon, root | Cell suspension | Flask | MS + 2 mg/L BAP + 0.5 mg/L NAA | neolignan, phenolic acid, furofuran, furan, dibenzylbutane | in vitro | inhibits tyrosinase and elastase, antioxidant activity | [63] |
Nelumbo nucifera Gaertn. (Nelombonaceae) | Sacred lotus | Leaf | Cell suspension | Bioreactor | MS + 0.05 mg/L NAA | not specified | in vitro using melanoma, in vivo | antioxidant activity and skin-soothing properties, skin-whitening effect | [23] |
Oryza sativa L. (Poaceae) | Rice | Seed | Cell suspension | Flask | Chu N6 | phenolic compounds | in vitro using fibroblasts | promotes the migration of fibroblasts to facilitate tissue regeneration and wound healing | [64] |
Callus | Flask | MS + 2 mg/L 2,4-D + 1 mg/L NAA + 1 mg/L BAP | phenolic compounds, amino acids | in vitro using keratinocytes | promotes keratinocyte proliferation, inhibits degradation of collagen and melanin production, antioxidant activity, anti-inflammatory activity | [65] | |||
Pueraria candollei var. mirifica (Airy Shaw & Suvat.) Niyomdham (Fabaceae) | Thai kudzu | Seedling | Cell suspension | Flask | MS + 0.2 mg/L 2,4-D | isoflavonoid (daidzein) | in vitro using fibroblasts | promotes fibroblast proliferation, oxidative damage prevention | [66] |
Pyrus pyrifolia (Burm.f.) Nakai (Rosaceae) | Kumoi | Leaf | Cell suspension | Flask | MS + 2 mg/L Picloram | uridine, adenosine, and guanosine | in vitro using fibroblasts and keratinocytes | promotes keratinocyte proliferation and migration, increases procollagen synthesis in fibroblasts; inhibits biosynthesis of melanin, antioxidant activity | [19] |
Cotyledon | Cell suspension | Flask | MS + 2 mg/L Picloram | phenolic compounds, flavonoids | in vitro using fibroblast | [67] | |||
Rubus idaeus L. (Rosaceae) | European raspberry, red raspberry | Leaf | Cell suspension | Flask | B5 + 1 mg/L 2,4-D + 0.1 mg/L KIN | fatty acids (palmitic, stearic, oleic, linoleic, α-linolenic acids, arachidic, arachidonic), phenolic acids (coumaric, ferulic acid), flavonoids (kaempferol) | in vitro using fibroblasts and keratinocytes, in vivo | induces the genes responsible for skin hydration (aquaporin 3, filaggrin, involucrin, and hyaluronic acid synthase), stimulates the expression and activity of glucocerebrosidase for ceramide production | [68] |
Rhus coriaria L. (Anacardiaceae) | Sicilian sumac, Tanner’s sumac | Leaf | Cell suspension | Flask | B5 + 0.5 mg/L NAA + 0.2 mg/L IAA + 0.02 mg/L KIN + 4% sucrose | gallic acid | in vitro using fibroblasts and keratinocytes | induces significant keratinocyte migration and wound closure | [69] |
Tiarella polyphylla D.Don (Saxifragaceae) | Foam flowers | Stem | Callus | Flask | ½ MS + 1 mg/L BAP + 0.3 mg/L 2,4-D | nicotiflorin, astragalin, quercitrin, myricitri | in vitro using fibroblasts | anti-aging via regulation of the type I procollagen reduction and MMP-1 (collagenase-1) secretion in dermal fibroblasts by UVB irradiation | [70] |
Woodfordia fruticosa Kurz. (Lythraceae) | Fire flame bush | Leaf | Callus | Flask | ½ MS + 0.25 mg/L 2,4,5-T + 0.10 mg/L BAP | polyphenols | in vitro using human and murine fibroblast | increases the synthesis of collagen-I and elastin | [71] |
Plant Sources | Participants (n; Age Range) | Formulation/Application | Clinical Effects | Ref |
---|---|---|---|---|
Cirsium eriophorum | 40 (20–40) | Cream (0.5%)/twice daily for 4 weeks |
| [53] |
Daphne odora | 20 (18–65) | Cream (0.002%)/twice daily for 4 weeks |
| [21] |
Leontopodium alpinum | 21 (48) | Cream (1%)/twice daily for 4 weeks |
| [22] |
Malus domestica | 20 (37–64) | Cream (2%)/twice daily for 4 weeks | reduction in wrinkles | [72] |
Compound | Function as an Antioxidant | Ref |
---|---|---|
Polyphenols, especially flavonoids and phenolic acids | Protection against oxidative stress-induced cellular damage through inhibition of reactive oxygen and nitrogen species (RONS) and the ability to chelate transition metal ions such as Fe (II) and Cu (II), Reduction in the expression of matrix metalloproteinases that catalyze the degradation of skin proteins in epidermal keratinocytes and dermal fibroblasts Protection of other antioxidants, such as vitamin C in the cytosol or vitamin E in biological membranes Protection against UV-induced peroxidation of cell membrane lipid acids, reduction in oxidative stress caused by sunlight and oxygen | [16,81,82,83,84] |
Vitamin C | ROS scavenger Protection of the viability of cell membranes by promoting the expression of genes encoding antioxidant enzymes Inhibition of lipid peroxidation by regenerating fat-soluble vitamin E Reduction in UVA-induced oxidative stress | [16,85,86] |
Vitamin E | Inhibition of lipid peroxidation and formation of 8-hydroxydeoxyguanosine—a biomarker of oxidative DNA damage Protection against the damage of UVB-radiation | [16,87] |
Carotenoids | Protection of cell membranes and lipoproteins from oxidative damage by ROS scavengers Regeneration of tocopherol from the tocopheroxyl radical Prevention of photooxidative damage | [88,89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hermosaningtyas, A.A.; Chanaj-Kaczmarek, J.; Kikowska, M.; Gornowicz-Porowska, J.; Budzianowska, A.; Pawlaczyk, M. Potential of Plant Stem Cells as Helpful Agents for Skin Disorders—A Narrative Review. Appl. Sci. 2024, 14, 7402. https://doi.org/10.3390/app14167402
Hermosaningtyas AA, Chanaj-Kaczmarek J, Kikowska M, Gornowicz-Porowska J, Budzianowska A, Pawlaczyk M. Potential of Plant Stem Cells as Helpful Agents for Skin Disorders—A Narrative Review. Applied Sciences. 2024; 14(16):7402. https://doi.org/10.3390/app14167402
Chicago/Turabian StyleHermosaningtyas, Anastasia Aliesa, Justyna Chanaj-Kaczmarek, Małgorzata Kikowska, Justyna Gornowicz-Porowska, Anna Budzianowska, and Mariola Pawlaczyk. 2024. "Potential of Plant Stem Cells as Helpful Agents for Skin Disorders—A Narrative Review" Applied Sciences 14, no. 16: 7402. https://doi.org/10.3390/app14167402
APA StyleHermosaningtyas, A. A., Chanaj-Kaczmarek, J., Kikowska, M., Gornowicz-Porowska, J., Budzianowska, A., & Pawlaczyk, M. (2024). Potential of Plant Stem Cells as Helpful Agents for Skin Disorders—A Narrative Review. Applied Sciences, 14(16), 7402. https://doi.org/10.3390/app14167402