The Optimisation of Ultrasound-Assisted Extraction for the Polyphenols Content and Antioxidant Activity on Sanguisorba officinalis L. Aerial Parts Using Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Extracts Preparation
2.3. Experimental Design
2.4. Antioxidant Activity and Total Polyphenol Content Evaluation
2.5. Partition Coefficient
2.6. Statistical Analysis
3. Results
3.1. Response Surface Methodology for Extraction Process of S. offcinalis
3.2. Measurement of Lipophilicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sady, S.; Matuszak, L.; Błaszczyk, A. Optimisation of Ultrasonic-Assisted Extraction of Bioactive Compounds from Chokeberry Pomace Using Response Surface Methodology. Acta Sci. Pol. Technol. Aliment. 2019, 18, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandile, M.; Duan, Y.; Ma, H.; Luo, X. Advances in Ultrasound Assisted Extraction of Bioactive Compounds from Cash Crops—A Review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Bitwell, C.; Indra, S.S.; Luke, C.; Kakoma, M.K. A Review of Modern and Conventional Extraction Techniques and Their Applications for Extracting Phytochemicals from Plants. Sci. Afr. 2023, 19, e01585. [Google Scholar] [CrossRef]
- Muzykiewicz-Szymańska, A.; Nowak, A.; Kucharska, E.; Cybulska, K.; Klimowicz, A.; Kucharski, Ł. Sanguisorba officinalis L. Ethanolic Extracts and Essential Oil—Chemical Composition, Antioxidant Potential, Antibacterial Activity, and Ex Vivo Skin Permeation Study. Front. Pharmacol. 2024, 15, 1390551. [Google Scholar] [CrossRef]
- Mohamad Said, K.A.; Mohamed Amin, M.A. Overview on the Response Surface Methodology (RSM) in Extraction Processes. J. Appl. Sci. Process Eng. 2016, 2, 8–17. [Google Scholar] [CrossRef]
- Xue, H.; Tan, J.; Li, Q.; Tang, J.; Cai, X. Optimization Ultrasound-Assisted Deep Eutectic Solvent Extraction of Anthocyanins from Raspberry Using Response Surface Methodology Coupled with Genetic Algorithm. Foods 2020, 9, 1409. [Google Scholar] [CrossRef]
- Czyrski, A.; Jarzębski, H. Response Surface Methodology as a Useful Tool for Evaluation of the Recovery of the Fluoroquinolones from Plasma—The Study on Applicability of Box-Behnken Design, Central Composite Design and Doehlert Design. Processes 2020, 8, 473. [Google Scholar] [CrossRef]
- Melgar, B.; Dias, M.I.; Barros, L.; Ferreira, I.C.F.R.; Rodriguez-Lopez, A.D.; Garcia-Castello, E.M. Ultrasound and Microwave Assisted Extraction of Opuntia Fruit Peels Biocompounds: Optimization and Comparison Using RSM-CCD. Molecules 2019, 24, 3618. [Google Scholar] [CrossRef]
- Phat Dao, T.; Chinh Nguyen, D.; Hien Tran, T.; Van Thinh, P.; Quang Hieu, V.; Vo Nguyen, D.V.; Duy Nguyen, T.; Giang Bach, L. Modeling and Optimization of the Orange Leaves Oil Extraction Process by Microwave-Assisted Hydro-Distillation: The Response Surface Method Based on the Central Composite Approach (RSM-CCD Model). Rasayan J. Chem. 2019, 12, 666–676. [Google Scholar] [CrossRef]
- Belwal, T.; Dhyani, P.; Bhatt, I.D.; Rawal, R.S.; Pande, V. Optimization Extraction Conditions for Improving Phenolic Content and Antioxidant Activity in Berberis asiatica Fruits Using Response Surface Methodology (RSM). Food Chem. 2016, 207, 115–124. [Google Scholar] [CrossRef]
- Chakraborty, S.; Uppaluri, R.; Das, C. Optimization of Ultrasound-Assisted Extraction (UAE) Process for the Recovery of Bioactive Compounds from Bitter Gourd Using Response Surface Methodology (RSM). Food Bioprod. Process 2020, 120, 114–122. [Google Scholar] [CrossRef]
- Tocai (Moţoc), A.-C.; Ranga, F.; Teodorescu, A.G.; Pallag, A.; Vlad, A.M.; Bandici, L.; Vicas, S.I. Evaluation of Polyphenolic Composition and Antimicrobial Properties of Sanguisorba officinalis L. and Sanguisorba minor. Scop. Plants 2022, 11, 3561. [Google Scholar] [CrossRef] [PubMed]
- Tocai, A.C.; Memete, A.R.; Vicaş, S.; Burescu, P. Antioxidant Capacity of Sanguisorba officinalis L. and Sanguisorba minor. Scop. Nat. Resour. Sustain. Dev. 2021, 11, 121–133. [Google Scholar] [CrossRef]
- Gawron-Gzella, A.; Witkowska-Banaszczak, E.; Bylka, W.; Dudek-Makuch, M.; Odwrot, A.; Skrodzka, N. Chemical Composition, Antioxidant and Antimicrobial Activities of Sanguisorba officinalis L. Extracts. Pharm. Chem. J. 2016, 50, 244–249. [Google Scholar] [CrossRef]
- Biernasiuk, A.; Wozniak, M.; Bogucka-Kocka, A. Determination of Free and Bounded Phenolic Acids in the Rhizomes and Herb of Sanguisorba officinalis L. Curr. Issues Pharm. Med. Sci. 2015, 28, 254–256. [Google Scholar] [CrossRef]
- Zhou, P.; Li, J.; Chen, Q.; Wang, L.; Yang, J.; Wu, A.; Jiang, N.; Liu, Y.; Chen, J.; Zou, W.; et al. A Comprehensive Review of Genus Sanguisorba: Traditional Uses, Chemical Constituents and Medical Applications. Front. Pharmacol. 2021, 12, 750165. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J.; Rapak, A.; Ochmian, I. Profile and Content of Phenolic Compounds in Leaves, Flowers, Roots, and Stalks of Sanguisorba officinalis L. Determined with the LC-DAD-ESI-QTOF-MS/MS Analysis and Their In Vitro Antioxidant, Antidiabetic, Antiproliferative Potency. Pharmaceuticals 2020, 13, 191. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
- Do, J.-R.; Kim, K.-J.; Park, S.-Y.; Lee, O.-H.; Kim, B.-S.; Kang, S.-N. Antimicribial and Antioxidant Activities of Ethanol Extracts of Medicinal Plants. Prev. Nutr. Food Sci. 2005, 10, 81–87. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Nowak, A.; Muzykiewicz-Szymańska, A.; Kucharski, Ł.; Szymczykowska, K.; Janda-Milczarek, K. Kombucha as a Potential Active Ingredient in Cosmetics—An Ex Vivo Skin Permeation Study. Molecules 2024, 29, 1018. [Google Scholar] [CrossRef]
- Kucharski, Ł.; Cybulska, K.; Kucharska, E.; Nowak, A.; Pełech, R.; Klimowicz, A. Biologically Active Preparations from the Leaves of Wild Plant Species of the Genus Rubus. Molecules 2022, 27, 5486. [Google Scholar] [CrossRef] [PubMed]
- Makuch, E. Enhancement of the Antioxidant and Skin Permeation Properties of Eugenol by the Esterification of Eugenol to New Derivatives. AMB Express 2020, 10, 187. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Knoerzer, K.; Sabarez, H.; Simal, S.; Rosselló, C.; Femenia, A. Effect of Acoustic Frequency and Power Density on the Aqueous Ultrasonic-Assisted Extraction of Grape Pomace (Vitis vinifera L.)—A Response Surface Approach. Ultrason. Sonochem. 2014, 21, 2176–2184. [Google Scholar] [CrossRef] [PubMed]
- Vetal, M.D.; Lade, V.G.; Rathod, V.K. Extraction of Ursolic Acid from Ocimum Sanctum by Ultrasound: Process Intensification and Kinetic Studies. Chem. Eng. Process 2013, 69, 24–30. [Google Scholar] [CrossRef]
- Alsaud, N.; Farid, M. Insight into the Influence of Grinding on the Extraction Efficiency of Selected Bioactive Compounds from Various Plant Leaves. Appl. Sci. 2020, 10, 6362. [Google Scholar] [CrossRef]
- Becker, L.; Zaiter, A.; Petit, J.; Zimmer, D.; Karam, M.-C.; Baudelaire, E.; Scher, J.; Dicko, A. Improvement of Antioxidant Activity and Polyphenol Content of Hypericum perforatum and Achillea millefolium Powders Using Successive Grinding and Sieving. Ind. Crops Prod. 2016, 87, 116–123. [Google Scholar] [CrossRef]
- Becker, L.; Zaiter, A.; Petit, J.; Karam, M.-C.; Sudol, M.; Baudelaire, E.; Scher, J.; Dicko, A. How Do Grinding and Sieving Impact on Physicochemical Properties, Polyphenol Content, and Antioxidant Activity of Hieracium pilosella L. Powders? J. Funct. Foods 2017, 35, 666–672. [Google Scholar] [CrossRef]
- Deli, M.; Ndjantou, E.B.; Ngatchic Metsagang, J.T.; Petit, J.; Njintang Yanou, N.; Scher, J. Successive Grinding and Sieving as a New Tool to Fractionate Polyphenols and Antioxidants of Plants Powders: Application to Boscia senegalensis Seeds, Dichrostachys glomerata Fruits, and Hibiscus sabdariffa Calyx Powders. Food Sci. Nutr. 2019, 7, 1795–1806. [Google Scholar] [CrossRef]
- Yim, H.S.; Chye, F.Y.; Koo, S.M.; Matanjun, P.; How, S.E.; Ho, C.W. Optimization of Extraction Time and Temperature for Antioxidant Activity of Edible Wild Mushroom, Pleurotus porrigens. Food Bioprod. Process 2012, 90, 235–242. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of Extraction Time, Temperature and Solvent on Concentration and Antioxidant Activity of Grape Marc Phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Viacava, G.E.; Roura, S.I.; Agüero, M.V. Optimization of Critical Parameters during Antioxidants Extraction from Butterhead Lettuce to Simultaneously Enhance Polyphenols and Antioxidant Activity. Chemom. Intell. Lab. Syst. 2015, 146, 47–54. [Google Scholar] [CrossRef]
- Çam, M.; Hışıl, Y. Pressurised Water Extraction of Polyphenols from Pomegranate Peels. Food Chem. 2010, 123, 878–885. [Google Scholar] [CrossRef]
- Adil, İ.H.; Yener, M.E.; Bayındırlı, A. Extraction of Total Phenolics of Sour Cherry Pomace by High Pressure Solvent and Subcritical Fluid and Determination of the Antioxidant Activities of the Extracts. Sep. Sci. Technol. 2008, 43, 1091–1110. [Google Scholar] [CrossRef]
- Topuz, O.K.; Gokoglu, N.; Yerlikaya, P.; Ucak, I.; Gumus, B. Optimization of Antioxidant Activity and Phenolic Compound Extraction Conditions from Red Seaweed (Laurencia obtuse). J. Aquat. Food Prod. Technol. 2016, 25, 414–422. [Google Scholar] [CrossRef]
- Rasul, M.G. Conventional Extraction Methods Use in Medicinal Plants, Their Advantages and Disadvantages. Int. J. Basic. Sci. Appl. Comput. 2018, 2, 10–14. [Google Scholar]
- Ghasemi, G.; Fattahi, M.; Alirezalu, A. Screening Genotypes and Optimizing Ultrasonic Extraction of Phenolic Antioxidants from Rheum Ribes Using Response Surface Methodology. Sci. Rep. 2024, 14, 21544. [Google Scholar] [CrossRef]
- Hammi, K.M.; Jdey, A.; Abdelly, C.; Majdoub, H.; Ksouri, R. Optimization of Ultrasound-Assisted Extraction of Antioxidant Compounds from Tunisian Zizyphus Lotus Fruits Using Response Surface Methodology. Food Chem. 2015, 184, 80–89. [Google Scholar] [CrossRef]
- Waszkowiak, K.; Gliszczyńska-Świgło, A. Binary Ethanol–Water Solvents Affect Phenolic Profile and Antioxidant Capacity of Flaxseed Extracts. Eur. Food Res. Technol. 2016, 242, 777–786. [Google Scholar] [CrossRef]
- Lohvina, H.; Sándor, M.; Wink, M. Effect of Ethanol Solvents on Total Phenolic Content and Antioxidant Properties of Seed Extracts of Fenugreek (Trigonella foenum-graecum L.) Varieties and Determination of Phenolic Composition by HPLC-ESI-MS. Diversity 2021, 14, 7. [Google Scholar] [CrossRef]
- Byun, N.-Y.; Cho, J.-H.; Yim, S.-H. Correlation between Antioxidant Activity and Anti-Wrinkle Effect of Ethanol Extracts of Sanguisorba officinalis L. Food Sci. Technol. 2021, 41, 791–798. [Google Scholar] [CrossRef]
- Carreira-Casais, A.; Otero, P.; Garcia-Perez, P.; Garcia-Oliveira, P.; Pereira, A.G.; Carpena, M.; Soria-Lopez, A.; Simal-Gandara, J.; Prieto, M.A. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. Int. J. Environ. Res. Public Health 2021, 18, 9153. [Google Scholar] [CrossRef] [PubMed]
- Thoo, Y.Y.; Ho, S.K.; Liang, J.Y.; Ho, C.W.; Tan, C.P. Effects of Binary Solvent Extraction System, Extraction Time and Extraction Temperature on Phenolic Antioxidants and Antioxidant Capacity from Mengkudu (Morinda citrifolia). Food Chem. 2010, 120, 290–295. [Google Scholar] [CrossRef]
- Mohamed Ahmed, I.A.; Al-Juhaimi, F.; Adisa, A.R.; Adiamo, O.Q.; Babiker, E.E.; Osman, M.A.; Gassem, M.A.; Ghafoor, K.; Alqah, H.A.S.; Elkareem, M.A. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds and Antioxidant Activity from Argel (Solenostemma argel Hayne) Leaves Using Response Surface Methodology (RSM). J. Food Sci. Technol. 2020, 57, 3071–3080. [Google Scholar] [CrossRef] [PubMed]
- Park, N.; Cho, S.-D.; Chang, M.-S.; Kim, G.-H. Optimization of the Ultrasound-Assisted Extraction of Flavonoids and the Antioxidant Activity of Ruby S Apple Peel Using the Response Surface Method. Food Sci. Biotechnol. 2022, 31, 1667–1678. [Google Scholar] [CrossRef]
- Chen, S.; Zeng, Z.; Hu, N.; Bai, B.; Wang, H.; Suo, Y. Simultaneous Optimization of the Ultrasound-Assisted Extraction for Phenolic Compounds Content and Antioxidant Activity of Lycium ruthenicum Murr. Fruit Using Response Surface Methodology. Food Chem. 2018, 242, 1–8. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y.; Chen, G.; Yue, W.; Liang, Q.; Wu, Q. Optimisation of Ultrasound Assisted Extraction of Phenolic Compounds from Sparganii Rhizoma with Response Surface Methodology. Ultrason. Sonochem. 2013, 20, 846–854. [Google Scholar] [CrossRef]
- Živković, J.; Šavikin, K.; Janković, T.; Ćujić, N.; Menković, N. Optimization of Ultrasound-Assisted Extraction of Polyphenolic Compounds from Pomegranate Peel Using Response Surface Methodology. Sep. Purif. Technol. 2018, 194, 40–47. [Google Scholar] [CrossRef]
- Şahin, S.; Şamlı, R. Optimization of Olive Leaf Extract Obtained by Ultrasound-Assisted Extraction with Response Surface Methodology. Ultrason. Sonochem. 2013, 20, 595–602. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Tułodziecka, A. Optimization of Ultrasound-Assisted Extraction Procedure to Determine Antioxidant Capacity of Rapeseed Cultivars. Food Anal. Methods 2015, 8, 778–789. [Google Scholar] [CrossRef]
- Xu, D.-P.; Zhou, Y.; Zheng, J.; Li, S.; Li, A.-N.; Li, H.-B. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from the Flower of Jatropha integerrima by Response Surface Methodology. Molecules 2015, 21, 18. [Google Scholar] [CrossRef]
- Imtiaz, F.; Ahmed, D.; Abdullah, R.H.; Ihsan, S. Green Extraction of Bioactive Compounds from Thuja orientalis Leaves Using Microwave- and Ultrasound-Assisted Extraction and Optimization by Response Surface Methodology. Sustain. Chem. Pharm. 2023, 35, 101212. [Google Scholar] [CrossRef]
- Shehata, M.G.; Abd El Aziz, N.M.; Youssef, M.M.; El-Sohaimy, S.A. Optimization Conditions of Ultrasound-assisted Extraction of Phenolic Compounds from Orange Peels Using Response Surface Methodology. J. Food Process Preserv. 2021, 45, e15870. [Google Scholar] [CrossRef]
No. Experiment | Raw Material Content | Ethanol Concentration | Extraction Time | |||
---|---|---|---|---|---|---|
[g/100 mL of Solvent] | [% v/v] | [min] | ||||
XR 1 | XK 2 | XR 1 | XK 2 | XR 1 | XK 2 | |
1 | 7.5 | 1 | 20 | −1 | 1 | −1 |
2 | 7.5 | 1 | 20 | −1 | 5.5 | 0 |
3 | 7.5 | 1 | 20 | −1 | 10 | 1 |
4 | 7.5 | 1 | 40 | 0 | 1 | −1 |
5 | 7.5 | 1 | 40 | 0 | 5.5 | 0 |
6 | 7.5 | 1 | 40 | 0 | 10 | 1 |
7 | 7.5 | 1 | 60 | 1 | 1 | −1 |
8 | 7.5 | 1 | 60 | 1 | 5.5 | 0 |
9 | 7.5 | 1 | 60 | 1 | 10 | 1 |
10 | 5.75 | 0 | 20 | −1 | 1 | −1 |
11 | 5.75 | 0 | 20 | −1 | 5.5 | 0 |
12 | 5.75 | 0 | 20 | −1 | 10 | 1 |
13 | 5.75 | 0 | 40 | 0 | 1 | −1 |
14 | 5.75 | 0 | 40 | 0 | 5.5 | 0 |
15 | 5.75 | 0 | 40 | 0 | 10 | 1 |
16 | 5.75 | 0 | 60 | 1 | 1 | −1 |
17 | 5.75 | 0 | 60 | 1 | 5.5 | 0 |
18 | 5.75 | 0 | 60 | 1 | 10 | 1 |
19 | 4 | −1 | 20 | −1 | 1 | −1 |
20 | 4 | −1 | 20 | −1 | 5.5 | 0 |
21 | 4 | −1 | 20 | −1 | 10 | 1 |
22 | 4 | −1 | 40 | 0 | 1 | −1 |
23 | 4 | −1 | 40 | 0 | 5.5 | 0 |
24 | 4 | −1 | 40 | 0 | 10 | 1 |
25 | 4 | −1 | 60 | 1 | 1 | −1 |
26 | 4 | −1 | 60 | 1 | 5.5 | 0 |
27 | 4 | −1 | 60 | 1 | 10 | 1 |
AA-DPPH | AA-FRAP | TPC-F-C | |
---|---|---|---|
a0 | −4.06156 | 17.03347 | 0.271311 |
a1 | 2.05059 | −7.53573 | −0.149816 |
a2 | −0.12100 | 0.75467 | 0.026748 |
a3 | 0.22767 | 0.53006 | 0.044819 |
a4 | −0.00326 | −0.00631 | −0.000440 |
a5 | 0.32177 | 0.40814 | 0.065938 |
a6 | −0.05023 | −0.06310 | −0.009276 |
a7 | 0.00028 | −0.01391 | −0.001604 |
a8 | 0.04664 | 0.09204 | 0.014078 |
a9 | 0.00665 | 0.01223 | 0.000189 |
R2 | 0.872 | 0.709 | 0.860 |
AdjR2 | 0.804 | 0.555 | 0.786 |
SD | 0.75 | 2.4 | 0.14 |
PRESS | 15.4 | 150 | 0.529 |
No. Experiment | Raw Material Content | Ethanol Concentration | Extraction Time | ||||||
---|---|---|---|---|---|---|---|---|---|
Observed Values | Expected Values | Residual Values | Observed Values | Expected Values | Residual Values | Observed Values | Expected Values | Residual Values | |
mmol Trolox/L | mmol FeSO4/L | g GA/L | |||||||
1 | 8.99 | 8.56 | 0.44 | 10.57 | 10.24 | 0.33 | 1.34 | 1.30 | 0.04 |
2 | 11.53 | 10.71 | 0.82 | 16.59 | 14.44 | 2.16 | 1.91 | 1.82 | 0.09 |
3 | 11.39 | 10.83 | 0.57 | 16.72 | 16.08 | 0.64 | 1.93 | 1.96 | −0.02 |
4 | 8.09 | 9.38 | −1.28 | 8.97 | 11.43 | −2.46 | 1.25 | 1.43 | −0.18 |
5 | 11.92 | 12.13 | −0.20 | 17.53 | 16.73 | 0.81 | 2.01 | 1.96 | 0.04 |
6 | 12.62 | 12.84 | −0.22 | 19.24 | 19.47 | −0.23 | 2.07 | 2.12 | −0.05 |
7 | 6.54 | 7.59 | −1.04 | 4.38 | 7.58 | −3.20 | 0.95 | 1.21 | −0.26 |
8 | 11.84 | 10.94 | 0.90 | 16.67 | 13.98 | 2.69 | 2.02 | 1.76 | 0.26 |
9 | 12.28 | 12.25 | 0.03 | 17.09 | 17.82 | −0.73 | 2.02 | 1.94 | 0.08 |
10 | 7.96 | 7.68 | 0.27 | 8.00 | 6.25 | 1.75 | 1.14 | 0.97 | 0.17 |
11 | 8.16 | 9.47 | −1.31 | 8.13 | 9.73 | −1.60 | 1.33 | 1.38 | −0.05 |
12 | 8.09 | 9.22 | −1.12 | 8.10 | 10.64 | −2.54 | 1.30 | 1.41 | −0.10 |
13 | 9.23 | 8.49 | 0.74 | 9.39 | 7.93 | 1.45 | 1.25 | 1.16 | 0.10 |
14 | 10.83 | 10.87 | −0.04 | 6.03 | 12.50 | −6.47 | 1.50 | 1.58 | −0.08 |
15 | 10.97 | 11.22 | −0.25 | 15.60 | 14.52 | 1.07 | 1.52 | 1.63 | −0.11 |
16 | 8.42 | 6.69 | 1.72 | 9.33 | 4.57 | 4.77 | 1.21 | 0.99 | 0.22 |
17 | 10.08 | 9.67 | 0.41 | 12.40 | 10.24 | 2.16 | 1.40 | 1.43 | −0.03 |
18 | 10.20 | 10.62 | −0.42 | 12.77 | 13.36 | −0.59 | 1.40 | 1.50 | −0.10 |
19 | 6.19 | 6.07 | 0.12 | 6.40 | 6.89 | −0.49 | 0.74 | 0.81 | −0.07 |
20 | 7.17 | 7.48 | −0.31 | 9.31 | 9.64 | −0.33 | 0.97 | 1.10 | −0.13 |
21 | 7.39 | 6.87 | 0.53 | 9.91 | 9.83 | 0.08 | 1.10 | 1.02 | 0.08 |
22 | 6.34 | 6.87 | −0.53 | 8.00 | 9.06 | −1.06 | 0.94 | 1.05 | −0.11 |
23 | 9.56 | 8.88 | 0.67 | 15.91 | 12.90 | 3.01 | 1.42 | 1.37 | 0.06 |
24 | 9.98 | 8.86 | 1.12 | 18.08 | 14.20 | 3.89 | 1.65 | 1.30 | 0.34 |
25 | 4.62 | 5.06 | −0.44 | 5.09 | 6.18 | −1.09 | 1.04 | 0.94 | 0.10 |
26 | 6.73 | 7.67 | −0.94 | 8.71 | 11.13 | −2.42 | 1.12 | 1.27 | −0.15 |
27 | 8.02 | 8.25 | −0.23 | 11.93 | 13.52 | −1.59 | 1.12 | 1.23 | −0.11 |
Input Variables | Process Functions Examined | ||
---|---|---|---|
AA-DPPH | AA-FRAP | TPC-F-C | |
Raw material content [g/100 mL of solvent] | 11 | 4.7 | 2.6 |
Ethanol concentration [% v/v] | 47 | 48 | 47 |
Extraction time [min] | 11 | 11 | 6 |
Optimal Parameters of the Extraction Process | Unit | |
---|---|---|
Raw material content | g/100 mL of solvent | 7.5 |
Ethanol concentration | % v/v | 47 |
Extraction time | min | 10 |
Functions of the extraction process | ||
AA-DPPH | mmol Trolox/L | 12.9 |
AA-FRAP | mmol FeSO4/L | 19.4 |
TPC-F-C | g GA/L | 2.1 |
Functions of the Extraction Process | Unit | Value |
---|---|---|
AA-DPPH | mmol Trolox/L | 12.7 ± 0.9 |
AA-FRAP | mmol FeSO4/L | 20.8 ± 0.9 |
TPC-F-C | g GA/L | 2.4 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muzykiewicz-Szymańska, A.; Kucharska, E.; Pełech, R.; Nowak, A.; Jakubczyk, K.; Kucharski, Ł. The Optimisation of Ultrasound-Assisted Extraction for the Polyphenols Content and Antioxidant Activity on Sanguisorba officinalis L. Aerial Parts Using Response Surface Methodology. Appl. Sci. 2024, 14, 9579. https://doi.org/10.3390/app14209579
Muzykiewicz-Szymańska A, Kucharska E, Pełech R, Nowak A, Jakubczyk K, Kucharski Ł. The Optimisation of Ultrasound-Assisted Extraction for the Polyphenols Content and Antioxidant Activity on Sanguisorba officinalis L. Aerial Parts Using Response Surface Methodology. Applied Sciences. 2024; 14(20):9579. https://doi.org/10.3390/app14209579
Chicago/Turabian StyleMuzykiewicz-Szymańska, Anna, Edyta Kucharska, Robert Pełech, Anna Nowak, Karolina Jakubczyk, and Łukasz Kucharski. 2024. "The Optimisation of Ultrasound-Assisted Extraction for the Polyphenols Content and Antioxidant Activity on Sanguisorba officinalis L. Aerial Parts Using Response Surface Methodology" Applied Sciences 14, no. 20: 9579. https://doi.org/10.3390/app14209579
APA StyleMuzykiewicz-Szymańska, A., Kucharska, E., Pełech, R., Nowak, A., Jakubczyk, K., & Kucharski, Ł. (2024). The Optimisation of Ultrasound-Assisted Extraction for the Polyphenols Content and Antioxidant Activity on Sanguisorba officinalis L. Aerial Parts Using Response Surface Methodology. Applied Sciences, 14(20), 9579. https://doi.org/10.3390/app14209579