Non-Destructive Testing of Joints Used in Refrigerated Vehicle Bodies
Abstract
:1. Introduction
2. Research
2.1. Research Procedure
2.2. Materials and Methods
2.2.1. Materials
2.2.2. Ultrasonic Method
2.2.3. Thermographic Method
3. Results
3.1. Results Obtained for the Ultrasonic Method
3.2. Results Obtained for the Thermographic Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No | GA | BA | No | GA | BA | No | GA dB | BA dB |
---|---|---|---|---|---|---|---|---|
1 | 3.19 | 7.33 | 51 | 2.95 | 7.00 | 101 | 3.20 | 7.38 |
2 | 2.86 | 7.08 | 52 | 2.97 | 7.06 | 102 | 2.84 | 6.92 |
3 | 2.83 | 7.02 | 53 | 3.07 | 6.95 | 103 | 3.09 | 7.04 |
4 | 2.92 | 7.18 | 54 | 2.97 | 7.01 | 104 | 3.14 | 7.32 |
5 | 2.81 | 6.95 | 55 | 2.88 | 7.35 | 105 | 3.02 | 6.94 |
6 | 3.18 | 7.23 | 56 | 3.06 | 7.09 | 106 | 3.19 | 7.17 |
7 | 2.84 | 7.03 | 57 | 3.06 | 7.39 | 107 | 3.19 | 6.94 |
8 | 2.92 | 7.16 | 58 | 3.05 | 7.27 | 108 | 3.05 | 7.34 |
9 | 3.08 | 7.37 | 59 | 2.95 | 7.06 | 109 | 2.87 | 7.19 |
10 | 2.94 | 7.02 | 60 | 2.91 | 7.24 | 110 | 3.17 | 7.07 |
11 | 2.95 | 7.36 | 61 | 3.15 | 7.36 | 111 | 2.86 | 7.18 |
12 | 3.14 | 7.35 | 62 | 3.06 | 7.33 | 112 | 3.13 | 7.38 |
13 | 2.83 | 7.13 | 63 | 2.82 | 6.96 | 113 | 2.84 | 7.01 |
14 | 3.00 | 7.05 | 64 | 3.05 | 7.08 | 114 | 2.91 | 6.98 |
15 | 3.03 | 7.23 | 65 | 3.22 | 7.33 | 115 | 3.19 | 7.06 |
16 | 3.05 | 7.16 | 66 | 3.08 | 7.00 | 116 | 3.13 | 7.10 |
17 | 3.16 | 7.09 | 67 | 3.09 | 7.04 | 117 | 2.92 | 7.11 |
18 | 2.85 | 7.31 | 68 | 2.81 | 7.09 | 118 | 3.21 | 7.39 |
19 | 2.88 | 7.23 | 69 | 2.89 | 7.23 | 119 | 2.91 | 7.35 |
20 | 3.03 | 7.23 | 70 | 3.04 | 6.99 | 120 | 2.89 | 7.17 |
21 | 2.98 | 7.20 | 71 | 2.88 | 6.99 | 121 | 2.94 | 7.22 |
22 | 2.87 | 7.33 | 72 | 3.19 | 7.27 | 122 | 2.92 | 7.06 |
23 | 3.18 | 7.21 | 73 | 3.17 | 7.29 | 123 | 2.98 | 6.95 |
24 | 3.01 | 7.02 | 74 | 3.03 | 6.94 | 124 | 2.91 | 6.93 |
25 | 2.80 | 7.26 | 75 | 2.85 | 7.00 | 125 | 2.99 | 7.13 |
26 | 2.94 | 7.38 | 76 | 2.84 | 6.98 | 126 | 3.22 | 7.05 |
27 | 2.94 | 7.38 | 77 | 2.97 | 7.11 | 127 | 3.17 | 7.38 |
28 | 3.21 | 7.03 | 78 | 2.97 | 7.00 | 128 | 3.20 | 6.97 |
29 | 2.87 | 7.27 | 79 | 2.89 | 7.18 | 129 | 3.01 | 6.96 |
30 | 2.88 | 7.16 | 80 | 2.88 | 7.08 | 130 | 3.17 | 6.92 |
31 | 3.01 | 6.96 | 81 | 3.16 | 7.35 | 131 | 3.12 | 6.97 |
32 | 3.09 | 7.36 | 82 | 3.00 | 7.05 | 132 | 2.86 | 7.09 |
33 | 3.21 | 6.93 | 83 | 3.20 | 7.34 | 133 | 2.81 | 7.05 |
34 | 3.14 | 6.92 | 84 | 2.97 | 7.26 | 134 | 2.95 | 7.23 |
35 | 2.97 | 7.00 | 85 | 3.10 | 7.34 | 135 | 2.99 | 7.13 |
36 | 2.97 | 7.21 | 86 | 3.10 | 7.17 | 136 | 2.82 | 7.37 |
37 | 3.11 | 7.27 | 87 | 3.11 | 7.19 | 137 | 2.83 | 7.08 |
38 | 3.08 | 7.34 | 88 | 3.08 | 6.93 | 138 | 3.06 | 7.27 |
39 | 2.80 | 7.32 | 89 | 2.90 | 7.31 | 139 | 3.01 | 7.20 |
40 | 3.18 | 6.92 | 90 | 2.92 | 7.12 | 140 | 3.00 | 7.11 |
41 | 3.07 | 7.15 | 91 | 3.11 | 7.34 | 141 | 2.98 | 7.34 |
42 | 2.95 | 6.93 | 92 | 3.02 | 6.95 | 142 | 3.21 | 7.01 |
43 | 2.95 | 7.16 | 93 | 3.12 | 7.21 | 143 | 3.00 | 7.25 |
44 | 3.21 | 7.13 | 94 | 3.02 | 7.31 | 144 | 3.20 | 7.23 |
45 | 3.08 | 7.25 | 95 | 3.11 | 7.01 | 145 | 3.08 | 7.16 |
46 | 3.10 | 7.12 | 96 | 3.22 | 7.10 | 146 | 2.85 | 7.32 |
47 | 2.96 | 7.25 | 97 | 2.89 | 7.18 | 147 | 2.86 | 7.24 |
48 | 2.88 | 7.13 | 98 | 2.99 | 7.19 | 148 | 3.04 | 7.19 |
49 | 2.94 | 7.08 | 99 | 2.97 | 6.92 | 149 | 3.05 | 7.06 |
50 | 3.06 | 6.92 | 100 | 2.81 | 7.06 | 150 | 2.98 | 6.96 |
References
- Meneghetti, A.; Da Rold, G.; Cortella, G. Sustainable refrigerated food transport: Searching energy efficient routes. IFAC-PapersOnLine 2018, 51, 618–623. [Google Scholar] [CrossRef]
- Accorsi, R.; Gallo, A.; Manzini, R. A climate driven decision-support model for the distribution of perishable products. J. Clean. Prod. 2017, 165, 917–929. [Google Scholar] [CrossRef]
- Adekomaya, O.; Jamiru, T.; Sadiku, R.; Huan, Z. Sustaining the shelf life of fresh food in cold chain—A burden on the environment. Alex. Eng. J. 2016, 55, 1359–1365. [Google Scholar] [CrossRef]
- James, S.J.; James, C.; Evans, J.A. Modelling of food transportation systems—A review. Int. J. Refrig. 2006, 29, 947–957. [Google Scholar] [CrossRef]
- Agreement on the International Carriage of Perishable Foodstuffs and on the Special Equipment to Be Used for Such Carriage (ATP); United Nations: Geneva, Switzerland, 2024. [CrossRef]
- Tyczewski, P.; Bieńczak, K.; Zwierzycki, W. Budowa Pojazdów do Transportu Żywności; Wydawnictwo Naukowe ŁUKASIEWICZ—Instytut Technologii Eksploatacji: Radom, Poland, 2024; ISBN 978-83-7789-742-3. [Google Scholar]
- Homayoonfal, M.; Malekjani, N.; Jafari, S.M. Chapter Twelve—Transporting vehicles/trucks used in food plants. In Transporting Operations of Food Materials Within Food Factories; Jafari, S.M., Malekjani, N., Eds.; Woodhead Publishing: Syston, UK, 2023; pp. 317–339. ISBN 9780128185858. [Google Scholar] [CrossRef]
- Pirondi, A.; Dazzi, F.; Zomparelli, L. Adhesive joint use and aging in food machinery: A case-study on beverage filling systems. Int. J. Adhes. Adhes. 2021, 107, 102852. [Google Scholar] [CrossRef]
- Kuczmaszewski, J.; Zawada-Michałowska, J. Quality of Samples in Adhesive Joint Testing. Adv. Sci. Technol. Res. J. 2020, 14, 182–191. [Google Scholar] [CrossRef]
- Banea, M.D.; Rosioara, M.; Carbas, R.J.C.; da Silva, L.F.M. Multi-material adhesive joints for automotive industry. Compos. Part B Eng. 2018, 151, 71–77. [Google Scholar] [CrossRef]
- Banea, M.D.; da Silva, L.F.M.; Campilho, R.D.S.G.; Sato, C. Smart Adhesive Joints: An Overview of Recent Developments. J. Adhes. 2013, 90, 16–40. [Google Scholar] [CrossRef]
- Adams, R.D.; Drinkwater, B.W. Nondestructive testing of adhesively-bonded joints Department of Mechanical Engineering. Univ. Bristol Bristol UK NDTE Int. 1997, 30, 93–98. [Google Scholar]
- Yilmaz, B.; Ba, A.; Jasiuniene, E.; Bui, H.-K.; Berthiau, G. Evaluation of Bonding Quality with Advanced Nondestructive Testing (NDT) and Data Fusion. Sensors 2020, 20, 5127. [Google Scholar] [CrossRef]
- Goglio, L.; Rossetto, M. Ultrasonic testing of adhesive bonds of thin metal sheets. NdtE Int. 1999, 32, 323–331. [Google Scholar] [CrossRef]
- Rothenfusser, M.; Mayr, M.; Baumann, J. Acoustic nonlinearities in adhesive joints. Ultrasonics 2000, 38, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Schadow, F.; Brackrock, D.; Gaal, M.; Heckel, T. Ultrasonic Inspection and Data Analysis of Glass- and Carbon-Fibre-Reinforced Plastics. Procedia Struct. Integr. 2017, 7, 299–306. [Google Scholar] [CrossRef]
- Jasiuniene, E.; Mazeika, L.; Samaitis, V.; Cicenas, V.; Mattsson, D. Ultrasonic non-destructive testing of complex titanium/carbon fibre composite joints. Ultrasonics 2019, 95, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Shui, G.; Wang, Y.; Huang, P. Nonlinear ultrasonic evaluation of the fatigue damage of adhesive joints. NDT E Int. 2015, 70, 9–15. [Google Scholar] [CrossRef]
- Dixon, S.; Edwards, C.; Palmer, S.B.; Reed, J. Considerations for the Ultrasonic Inspection of Metal-Adhesive Bonds Using EMATs. J. Nondestruct. Eval. 2000, 19, 95–103. [Google Scholar] [CrossRef]
- Smagulova, D.; Yilmaz, B.; Jasiuniene, E. Ultrasonic Features for Evaluation of Adhesive Joints: A Comparative Study of Interface Defects. Sensors 2024, 24, 176. [Google Scholar] [CrossRef] [PubMed]
- Ulbrich, D.; Psuj, G.; Bartkowski, D.; Bartkowska, A. Assessment of Coating Properties in Car Body by Ultrasonic Method. Appl. Sci. 2024, 14, 8117. [Google Scholar] [CrossRef]
- Singh, S.P.; Sandhu, A.P.S.; Singh, J.; Joneson, E. Measurement and analysis of truck and rail shipping environment in India. Packag. Technol. Sci. 2007, 20, 381–392. [Google Scholar] [CrossRef]
- Rissi, G.O.; Singh, S.P.; Burgess, G.; Singh, J. Measurement and analysis of truck transport environment in Brazil. Packag. Technol. Sci. 2008, 21, 231–246. [Google Scholar] [CrossRef]
- Garcia-Romeu-Martinez, M.A.; Singh, S.P.; Cloquell-Ballester, V.A. Measurement and analysis of vibration levels for truck transport in Spain as a function of payload, suspension and speed. Packag. Technol. Sci. 2007, 21, 439–451. [Google Scholar] [CrossRef]
- Jarimopas, B.; Singh, S.P.; Saengnil, W. Measurement and analysis of truck transport vibration levels and damage to packaged tangerines during transit. Packag. Technol. Sci. 2005, 18, 179–188. [Google Scholar] [CrossRef]
- Böröcz, P.; Singh, S.P. Measurement and analysis of delivery van vibration levels to simulate package testing for parcel delivery in Hungary. Packag. Technol. Sci. 2018, 31, 342–352. [Google Scholar] [CrossRef]
- Domínguez, R.; Dasso, J. An Assessment of Whole-Body Vibrations Exposure in Transport Truck Drivers. In Advances in Physical, Social & Occupational Er-Gonomics; AHFE 2020; Advances in Intelligent Systems and Computing; Karwowski, W., Goonetilleke, R., Xiong, S., Goossens, R., Murata, A., Eds.; Springer: Cham, Switzerland, 2020; Volume 1215. [Google Scholar] [CrossRef]
- Park, J.; Choi, S.; Jung, H.M. Measurement and Analysis of Vibration Levels for Truck Transport Environment in Korea. Appl. Sci. 2020, 10, 6754. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, Z.; Xia, Y.; Jiang, H. A review of debonding behavior of soft material adhesive systems. Mech. Soft. Mater. 2022, 4, 7. [Google Scholar] [CrossRef]
- Yaman, M.; Şansveren, M.F.; Maraş, S. Vibration characteristics analysis of adhesively bonded different joints. Turk. J. Electromech. Energy 2020, 5, 21–28. [Google Scholar]
- Yildiz, T. CFD Characteristics of Refrigerated Trailers and Improvement of Airflow for Preserving Perishable Foods. Logistics 2019, 3, 11. [Google Scholar] [CrossRef]
- So, J.-H.; Joe, S.-Y.; Hwang, S.-H.; Jun, S.; Lee, S.-H. Analysis of the Temperature Distribution in a Refrigerated Truck Body Depending on the Box Loading Patterns. Foods 2021, 10, 2560. [Google Scholar] [CrossRef] [PubMed]
- Pisharody, A.P.; Blandford, B.; Smith, D.E.; Jack, D.A. An experimental investigation on the effect of adhesive distribution on strength of bonded joints. Appl. Adhes. Sci. 2019, 7, 6. [Google Scholar] [CrossRef]
- Daemon, M. Ultrasonic Modelling for Non-Destructive Testing; MDPI: Basel, Switzerland, 2024. [Google Scholar] [CrossRef]
Decibel Drop for High Quality Area | Decibel Drop for Area with Adhesion Damage | |
---|---|---|
Average value dB | 3.009 | 7.147 |
Standard deviation | 0.121 | 0.143 |
The t-student coefficient | 1.976 | 1.976 |
Measurement error dB | 0.240 | 0.282 |
Ultrasonic Measure R, dB | ||||
---|---|---|---|---|
Location of the Measuring Point | 1 | 2 | 3 | 4 |
1 | 5.00 | 3.14 | 2.88 | 5.06 |
2 | 4.93 | 2.64 | 5.19 | 4.94 |
3 | 4.92 | 2.97 | 2.78 | 2.80 |
4 | 5.05 | 2.77 | 2.72 | 2.87 |
5 | 5.15 | 2.67 | 2.99 | 2.99 |
6 | 5.32 | 3.16 | 3.06 | 3.29 |
7 | 4.93 | 3.23 | 3.05 | 2.83 |
8 | 5.47 | 2.66 | 2.91 | 3.06 |
9 | 5.44 | 3.05 | 3.27 | 2.65 |
10 | 4.84 | 3.26 | 2.78 | 2.96 |
11 | 5.29 | 3.00 | 3.14 | 2.76 |
12 | 5.21 | 2.63 | 2.98 | 3.29 |
13 | 5.13 | 2.71 | 2.92 | 2.89 |
14 | 5.57 | 5.18 | 3.25 | 3.18 |
15 | 4.97 | 5.05 | 2.95 | 2.96 |
16 | 5.62 | 5.14 | 5.42 | 3.31 |
17 | 2.77 | 2.62 | 3.30 | 3.26 |
18 | 3.22 | 3.00 | 2.76 | 3.20 |
19 | 2.86 | 3.16 | 2.90 | 3.07 |
20 | 3.23 | 3.01 | 2.71 | 3.13 |
21 | 2.96 | 2.62 | 3.28 | 3.01 |
22 | 2.80 | 3.18 | 2.61 | 3.01 |
23 | 2.96 | 2.89 | 2.68 | 2.79 |
24 | 3.01 | 2.93 | 2.66 | 3.09 |
25 | 3.28 | 2.69 | 3.31 | 2.78 |
26 | 5.41 | 2.99 | 3.21 | 3.21 |
27 | 5.65 | 3.00 | 3.03 | 4.84 |
28 | 4.76 | 2.72 | 3.09 | 5.43 |
29 | 5.18 | 5.50 | 2.66 | 4.95 |
30 | 5.35 | 5.46 | 5.14 | 4.99 |
Ultrasonic Measure R, dB | ||||
---|---|---|---|---|
Location of the Measuring Point | 1 | 2 | 3 | 4 |
1 | 5.54 | 5.00 | 5.49 | 5.47 |
2 | 4.96 | 4.74 | 5.21 | 4.88 |
3 | 4.90 | 3.01 | 2.91 | 4.76 |
4 | 2.64 | 3.20 | 2.69 | 5.42 |
5 | 3.23 | 3.14 | 2.94 | 4.83 |
6 | 2.93 | 2.61 | 2.93 | 5.59 |
7 | 2.86 | 3.21 | 3.22 | 5.51 |
8 | 2.61 | 2.84 | 2.71 | 2.98 |
9 | 2.83 | 3.22 | 2.77 | 2.74 |
10 | 3.14 | 2.89 | 2.61 | 3.17 |
11 | 2.85 | 2.75 | 3.02 | 2.77 |
12 | 3.21 | 2.73 | 3.20 | 3.16 |
13 | 4.91 | 3.28 | 2.79 | 3.15 |
14 | 5.26 | 5.31 | 3.02 | 2.64 |
15 | 4.84 | 5.19 | 2.75 | 2.75 |
16 | 5.59 | 5.62 | 3.23 | 3.14 |
17 | 5.55 | 5.08 | 3.09 | 3.28 |
18 | 5.01 | 3.01 | 2.93 | 2.96 |
19 | 5.60 | 2.88 | 2.61 | 3.06 |
20 | 4.89 | 3.24 | 2.98 | 2.68 |
21 | 5.60 | 2.75 | 2.68 | 5.15 |
22 | 5.53 | 2.95 | 2.81 | 5.21 |
23 | 5.04 | 2.67 | 3.29 | 5.50 |
24 | 5.34 | 3.08 | 2.70 | 5.36 |
25 | 5.41 | 2.90 | 2.63 | 5.33 |
26 | 5.11 | 2.80 | 2.86 | 5.16 |
27 | 5.21 | 3.14 | 3.01 | 4.97 |
28 | 5.27 | 3.26 | 2.86 | 5.12 |
29 | 5.34 | 2.81 | 3.24 | 5.19 |
30 | 5.66 | 5.09 | 4.98 | 5.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalczyk, J.; Tyczewski, P. Non-Destructive Testing of Joints Used in Refrigerated Vehicle Bodies. Appl. Sci. 2024, 14, 9364. https://doi.org/10.3390/app14209364
Kowalczyk J, Tyczewski P. Non-Destructive Testing of Joints Used in Refrigerated Vehicle Bodies. Applied Sciences. 2024; 14(20):9364. https://doi.org/10.3390/app14209364
Chicago/Turabian StyleKowalczyk, Jakub, and Przemysław Tyczewski. 2024. "Non-Destructive Testing of Joints Used in Refrigerated Vehicle Bodies" Applied Sciences 14, no. 20: 9364. https://doi.org/10.3390/app14209364
APA StyleKowalczyk, J., & Tyczewski, P. (2024). Non-Destructive Testing of Joints Used in Refrigerated Vehicle Bodies. Applied Sciences, 14(20), 9364. https://doi.org/10.3390/app14209364