Deterministic Trajectory Design and Attitude Maneuvers of Gradient-Index Solar Sail in Interplanetary Transfers
Abstract
:1. Introduction
2. Trajectory Design and Optimization
2.1. Thrust Vector Model of the Gradient-Index Sail with a Sun-Facing Attitude
2.2. Heliocentric Dynamics of the Spacecraft’s Center of Mass
2.3. Trajectory Optimization: Unconstrained Case
2.4. Trajectory Optimization: Case of Constrained Clock Angle
3. Mission Application and Trajectory Simulations
3.1. Case of Unconstrained Clock Angle
3.2. Case of Constrained Clock Angle
4. Spacecraft Attitude Maneuvers
5. Numerical Results of the Spacecraft Attitude Maneuvers
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Firuzi, S.; Song, Y.; Gong, S. Gradient-index solar sail and its optimal orbital control. Aerosp. Sci. Technol. 2021, 119, 107103. [Google Scholar] [CrossRef]
- Firuzi, S.; Gong, S. Refractive sail and its applications in solar sailing. Aerosp. Sci. Technol. 2018, 77, 362–372. [Google Scholar] [CrossRef]
- Bassetto, M.; Caruso, A.; Quarta, A.A.; Mengali, G. Optimal steering law of refractive sail. Adv. Space Res. 2021, 67, 2855–2864. [Google Scholar] [CrossRef]
- Swartzlander, G.A., Jr. Flying on a rainbow: A solar-driven diffractive sailcraft. JBIS—J. Br. Interplanet. Soc. 2018, 71, 130–132. [Google Scholar]
- Swartzlander, G.A., Jr. Radiation pressure on a diffractive sailcraft. J. Opt. Soc. Am. B Opt. Phys. 2017, 34, C25–C30. [Google Scholar] [CrossRef]
- Wie, B.; Murphy, D.; Paluszek, M.; Thomas, S. Robust Attitude Control Systems Design for Solar Sails (Part 2): MicroPPT-based Backup ACS. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, RI, USA, 16–19 August 2004. [Google Scholar] [CrossRef]
- Baù, G.; Hernando-Ayuso, J.; Bombardelli, C. A generalization of the equinoctial orbital elements. Celest. Mech. Dyn. Astron. 2021, 133, 50. [Google Scholar] [CrossRef]
- Walker, M.J.H.; Ireland, B.; Owens, J. A set of modified equinoctial orbit elements. Celest. Mech. 1985, 36, 409–419, Erratum in Celest. Mech. 1986, 38, 391–392. [Google Scholar] [CrossRef]
- Quarta, A.A.; Abu Salem, K.; Palaia, G. Solar sail transfer trajectory design for comet 29P/Schwassmann-Wachmann 1 rendezvous. Appl. Sci. 2023, 13, 9590. [Google Scholar] [CrossRef]
- Janhunen, P. Electric sail for spacecraft propulsion. J. Propuls. Power 2004, 20, 763–764. [Google Scholar] [CrossRef]
- Janhunen, P.; Sandroos, A. Simulation study of solar wind push on a charged wire: Basis of solar wind electric sail propulsion. Ann. Geophys. 2007, 25, 755–767. [Google Scholar] [CrossRef]
- Janhunen, P.; Toivanen, P.K.; Polkko, J.; Merikallio, S.; Salminen, P.; Haeggström, E.; Seppänen, H.; Kurppa, R.; Ukkonen, J.; Kiprich, S.; et al. Electric solar wind sail: Toward test missions. Rev. Sci. Instrum. 2010, 81, 111301. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, H.; Park, K.; Miyazaki, Y. Effect of static and dynamic solar sail deformation on center of pressure and thrust forces. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Keystone, CO, USA, 21–24 August 2006; pp. 990–1014. [Google Scholar] [CrossRef]
- Huang, X.; Zeng, X.; Circi, C.; Vulpetti, G.; Qiao, D. Analysis of the solar sail deformation based on the point cloud method. Adv. Space Res. 2021, 67, 2613–2627. [Google Scholar] [CrossRef]
- Boni, L.; Bassetto, M.; Quarta, A.A. Characterization of a solar sail membrane for Abaqus-Based Simulations. Aerospace 2024, 11, 151. [Google Scholar] [CrossRef]
- Srivastava, P.R.; Swartzlander, G.A., Jr. Optomechanics of a stable diffractive axicon light sail. Eur. Phys. J. Plus 2020, 135, 570. [Google Scholar] [CrossRef]
- Swartzlander, G.A., Jr. Theory of radiation pressure on a diffractive solar sail. J. Opt. Soc. Am. B Opt. Phys. 2022, 39, 2556–2563. [Google Scholar] [CrossRef]
- Dubill, A.L.; Swartzlander, G.A., Jr. Circumnavigating the Sun with diffractive solar sails. Acta Astronaut. 2021, 187, 190–195. [Google Scholar] [CrossRef]
- Betts, J.T. Very low-thrust trajectory optimization using a direct SQP method. J. Comput. Appl. Math. 2000, 120, 27–40. [Google Scholar] [CrossRef]
- Coverstone, V.L.; Prussing, J.E. Technique for Escape from Geosynchronous Transfer Orbit Using a Solar Sail. J. Guid. Control Dyn. 2003, 26, 628–634. [Google Scholar] [CrossRef]
- Park, R.S.; Folkner, W.M.; Williams, J.G.; Boggs, D.H. The JPL Planetary and Lunar Ephemerides DE440 and DE441. Astron. J. 2021, 161, 105. [Google Scholar] [CrossRef]
- Bryson, A.E.; Ho, Y.C. Applied Optimal Control; Hemisphere Publishing Corporation: New York, NY, USA, 1975; Chapter 2; pp. 71–89. ISBN 0-891-16228-3. [Google Scholar]
- Stengel, R.F. Optimal Control and Estimation; Dover Books on Mathematics; Dover Publications, Inc.: New York, NY, USA, 1994; pp. 222–254. [Google Scholar]
- Betts, J.T. Survey of Numerical Methods for Trajectory Optimization. J. Guid. Control Dyn. 1998, 21, 193–207. [Google Scholar] [CrossRef]
- Prussing, J.E. Optimal Spacecraft Trajectories; Oxford University Press: Oxford, UK, 2018; Chapter 4; pp. 32–40. [Google Scholar]
- Prussing, J.E. Spacecraft Trajectory Optimization; Cambridge University Press: Cambridge, UK, 2010; Chapter 2; pp. 16–36. [Google Scholar] [CrossRef]
- Ross, I.M. A Primer on Pontryagin’s Principle in Optimal Control; Collegiate Publishers: San Francisco, CA, USA, 2015; Chapter 2; pp. 127–129. [Google Scholar]
- Yang, W.Y.; Cao, W.; Kim, J.; Park, K.W.; Park, H.H.; Joung, J.; Ro, J.S.; Hong, C.H.; Im, T. Applied Numerical Methods Using MATLAB; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; Chapters 3 and 6; pp. 158–165, 312. [Google Scholar]
- Shampine, L.F.; Reichelt, M.W. The MATLAB ODE Suite. SIAM J. Sci. Comput. 1997, 18, 1–22. [Google Scholar] [CrossRef]
- Quarta, A.A. Fast initialization of the indirect optimization problem in the solar sail circle-to-circle orbit transfer. Aerosp. Sci. Technol. 2024, 147, 109058. [Google Scholar] [CrossRef]
- Bate, R.R.; Mueller, D.D.; White, J.E. Fundamentals of Astrodynamics; Dover Publications: New York, NY, USA, 1971; Chapter 2; pp. 54–55, 58–61. [Google Scholar]
- Yarnoz, D.G.; Jehn, R.; De Pascale, P. Trajectory design for the Bepi-Colombo mission to Mercury. JBIS—J. Br. Interplanet. Soc. 2007, 60, 202–208. [Google Scholar]
- Garcia Yarnoz, D.; Jehn, R.; Croon, M. Interplanetary navigation along the low-thrust trajectory of BepiColombo. Acta Astronaut. 2006, 59, 284–293. [Google Scholar] [CrossRef]
- Anderson, P.; Macdonald, M.; Yen, C.W. Novel orbits of Mercury, Venus and Mars enabled using low-thrust propulsion. Acta Astronaut. 2014, 94, 634–645. [Google Scholar] [CrossRef]
- Quarta, A.A.; Mengali, G. Solar Sail Missions to Mercury with Venus Gravity Assist. Acta Astronaut. 2009, 65, 495–506. [Google Scholar] [CrossRef]
- Åström, K.J.; Hägglund, T. Advanced PID Control; ISA—The Instrumentation, Systems, and Automation Society: Research Triangle Park, NC, USA, 2006. [Google Scholar]
- Wie, B.; Bailey, D.; Heiberg, C. Rapid Multitarget Acquisition and Pointing Control of Agile Spacecraft. J. Guid. Control Dyn. 2002, 25, 96–104. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bassetto, M.; Mengali, G.; Quarta, A.A. Deterministic Trajectory Design and Attitude Maneuvers of Gradient-Index Solar Sail in Interplanetary Transfers. Appl. Sci. 2024, 14, 10463. https://doi.org/10.3390/app142210463
Bassetto M, Mengali G, Quarta AA. Deterministic Trajectory Design and Attitude Maneuvers of Gradient-Index Solar Sail in Interplanetary Transfers. Applied Sciences. 2024; 14(22):10463. https://doi.org/10.3390/app142210463
Chicago/Turabian StyleBassetto, Marco, Giovanni Mengali, and Alessandro A. Quarta. 2024. "Deterministic Trajectory Design and Attitude Maneuvers of Gradient-Index Solar Sail in Interplanetary Transfers" Applied Sciences 14, no. 22: 10463. https://doi.org/10.3390/app142210463
APA StyleBassetto, M., Mengali, G., & Quarta, A. A. (2024). Deterministic Trajectory Design and Attitude Maneuvers of Gradient-Index Solar Sail in Interplanetary Transfers. Applied Sciences, 14(22), 10463. https://doi.org/10.3390/app142210463