Influence of Ultrasound on the Rheological Properties, Color, Carotenoid Content, and Other Physical Characteristics of Carrot Puree
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparations
2.2. Sonication
2.3. Carrot Puree Analysis
2.3.1. Total Soluble Content and Density
2.3.2. Viscosity and Activation Energy
2.3.3. Instrumental Color
2.3.4. Carotenoid Content
2.4. Statistical Analysis
3. Results
3.1. Physical Properties of Carrot Puree
3.2. Rheological Properties
3.3. Color and β-Carotene Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Freitas Brilhante, J.; de Andrade, N.J.; Ramos, A.M.; Vanetti, M.C.D.; Stringheta, P.C.; Benício Paes Chaves, J. Decontamination by ultrasound application in fresh fruits and vegetables. Food Control. 2014, 45, 36–50. [Google Scholar] [CrossRef]
- Tao, Y.; Sun, D.-W. Enhancement of Food Processes by Ultrasound: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 570–594. [Google Scholar] [CrossRef]
- Zinoviadou, K.G.; Galanakis, C.M.; Brnčić, M.; Grimi, N.; Boussetta, N.; Mota, M.J.; Saraiva, J.A.; Patras, A.; Tiwari, B.; Barba, F.J. Fruit juice sonication: Implications on food safety and physicochemical and nutritional properties. Food Res. Int. 2015, 77, 743–752. [Google Scholar] [CrossRef]
- Bi, X.; Hemar, Y.; Balaban, M.O.; Liao, X. The effect of ultrasound on particle size, color, viscosity and polyphenol oxidase activity of diluted avocado puree. Ultrason. Sonochem. 2015, 27, 567–575. [Google Scholar] [CrossRef]
- Tsikrika, K.; Chu, B.S.; Bremner, D.H.; Lemos, A. Effect of ultrasonic treatment on enzyme activity and bioactives of strawberry puree. Int. J. Food Sci. Technol. 2022, 57, 1739–1747. [Google Scholar] [CrossRef]
- Fonteles, T.; Leite, A.K.; Miguel, T.; Fernandes, F.; Pinheiro, S.; Miguel, E.; Rodrigues, S. Optimization of Sonication Parameters to Produce a Cashew Apple Bagasse Puree Rich in Superoxide Dismutase. Foods 2022, 11, 2694. [Google Scholar] [CrossRef]
- Shanmugam, A.; Chandrapala, J.; Ashokkumar, M. The effect of ultrasound on the physical and functional properties of skim milk. Innov. Food Sci. Emerg. Technol. 2012, 16, 251–258. [Google Scholar] [CrossRef]
- Indu, C.; Thangavel, K.; Amirtham, D. Influence of ultra-sonication on stability and physicochemical properties of coconut milk. J. Pharmacogn. Phytochem. 2019, 8, 3565–3570. [Google Scholar]
- Sun, Y.; Chen, H.; Chen, W.; Zhong, Q.; Zhang, M. Effect of ultrasound on pH-shift to improve thermal stability of coconut milk by modifying physicochemical properties of coconut milk protein. LWT 2022, 167, 113861. [Google Scholar] [CrossRef]
- Ishrat Majid, G.A.N.; Vikas, N. Ultrasonication and food technology: A review. Cogent Food Agric. 2015, 1, 1071022. [Google Scholar] [CrossRef]
- Kaur, G.J.; Orsat, V.; Singh, A. Sustainable usage of carrot discards in food processing. Int. J. Sustain. Dev. World Ecol. 2022, 29, 18–26. [Google Scholar] [CrossRef]
- Van Hecke, E.; Nguyen, P.U.; Clausse, D.; Lanoisellé, J.L. Flow behaviour of carrot puree: Modelling the influence of time, temperature and potato flakes addition. Int. J. Food Sci. Technol. 2012, 47, 177–185. [Google Scholar] [CrossRef]
- Moritaka, H.; Sawamura, S.I.; Kobayashi, M.; Kitade, M.; Nagata, K. Relation between the rheological properties and the swallowing characteristics of vegetable juices fortified with carrot puree. Biosci. Biotechnol. Biochem. 2012, 76, 429–435. [Google Scholar] [CrossRef]
- Christiaens, S.; Van Buggenhout, S.; Chaula, D.; Moelants, K.; David, C.C.; Hofkens, J.; Van Loey, A.M.; Hendrickx, M.E. In situ pectin engineering as a tool to tailor the consistency and syneresis of carrot purée. Food Chem. 2012, 133, 146–155. [Google Scholar] [CrossRef]
- Santiago, J.S.J.; Christiaens, S.; Van Loey, A.M.; Hendrickx, M.E. Deliberate processing of carrot purées entails tailored serum pectin structures. Innov. Food Sci. Emerg. Technol. 2016, 33, 515–523. [Google Scholar] [CrossRef]
- Nowacka, M.; Wedzik, M. Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue. Appl. Acoust. 2016, 103, 163–171. [Google Scholar] [CrossRef]
- Nowacka, M.; Dadan, M.; Janowicz, M.; Wiktor, A.; Witrowa-Rajchert, D.; Mandal, R.; Pratap-Singh, A.; Janiszewska-Turak, E. Effect of nonthermal treatments on selected natural food pigments and color changes in plant material. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5097–5144. [Google Scholar] [CrossRef] [PubMed]
- Kobus, Z.; Osmólska, E.; Starek-Wójcicka, A.; Krzywicka, M. Effect of High-Powered Ultrasound on Bioactive Compounds and Microbiological Stability of Juices—Review. Appl. Sci. 2023, 13, 10961. [Google Scholar] [CrossRef]
- Taha, A.; Ahmed, E.; Ismaiel, A.; Ashokkumar, M.; Xu, X.; Pan, S.; Hu, H. Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends Food Sci. Technol. 2020, 105, 363–377. [Google Scholar]
- Rybak, K.; Wiktor, A.; Kaveh, M.; Dadan, M.; Witrowa-Rajchert, D.; Nowacka, M. Effect of Thermal and Non-Thermal Technologies on Kinetics and the Main Quality Parameters of Red Bell Pepper Dried with Convective and Microwave–Convective Methods. Molecules 2022, 27, 2164. [Google Scholar] [CrossRef]
- Huang, D.; Men, K.; Li, D.; Wen, T.; Gong, Z.; Sunden, B.; Wu, Z. Application of ultrasound technology in the drying of food products. Ultrason. Sonochem. 2020, 63, 104950. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef]
- Mohit, S.; Nandan, S. Application of ultrasound in combination with other technologies in food processing: A review. Ultrason. Sonochem. 2021, 73, 105506. [Google Scholar] [CrossRef]
- Dadan, M.; Nowacka, M.; Wiktor, A.; Sobczynska, A.; Witrowa-Rajchert, D. Ultrasound to improve drying processes and prevent thermolabile nutrients degradation. In Design and Optimization of Innovative Food Processing Techniques Assisted by Ultrasound; Academic Press: Cambridge, MA, USA, 2021; pp. 55–110. [Google Scholar]
- Nasir, G.; Zaidi, S.; Ahmad, S.; Asfaq; Allai, F.M.; Ahmad, F.; Tarafdar, A. Current status of technological advancement of ultrasound processing in the food industry and its SWOT analysis. Crit. Rev. Food Sci. Nutr. 2024, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.G.; Fonteles, T.V.; de Jesus, A.L.; Rodrigues, S. Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chem. 2013, 139, 261–266. [Google Scholar] [CrossRef]
- Fonteles, T.V.; Costa, M.G.M.; de Jesus, A.L.T.; de Miranda, M.R.A.; Fernandes, F.A.N.; Rodrigues, S. Power ultrasound processing of cantaloupe melon juice: Effects on quality parameters. Food Res. Int. 2012, 48, 41–48. [Google Scholar] [CrossRef]
- Fonteles, T.V.; Leite, A.K.F.; da Silva, A.R.A.; Fernandes, F.A.N.; Rodrigues, S. Sonication effect on bioactive compounds of cashew apple bagasse. Food Bioprocess Technol. 2017, 10, 1854–1864. [Google Scholar] [CrossRef]
- Wang, X.; Han, M.; Peng, C.; Xie, A.; Fan, X.; Liu, Y. Moisture distribution change and quality characteristics of ultrasound enhanced heat pump drying on carrot. Int. J. Food Eng. 2024, 20, 583–600. [Google Scholar] [CrossRef]
- Kaur, G.J.; Orsat, V.; Singh, A. Application of central composite face centered design for the optimization of multiple-pass ultrasonication with mechanical homogenization (MPUMH) for carrot puree processing. Innov. Food Sci. Emerg. Technol. 2022, 76, 102944. [Google Scholar] [CrossRef]
- Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Hu, B.; Lei, S.; Zeng, X. Sonication enhances polyphenolic compounds, sugars, carotenoids and mineral elements of apple juice. Ultrason. Sonochem. 2014, 21, 93–97. [Google Scholar] [CrossRef]
- Fernandes, F.A.; Gallão, M.I.; Rodrigues, S. Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. LWT-Food Sci. Technol. 2008, 41, 604–610. [Google Scholar] [CrossRef]
- Kobus, Z.; Nadulski, R.; Wilczyński, K.; Starek, A.; Zawiślak, K.; Rydzak, L.; Andrejko, D. Modeling of rheological properties of cloudy apple juice using master curve. CyTA-J. Food 2019, 17, 648–655. [Google Scholar] [CrossRef]
- Quek, M.C.; Chin, N.L.; Yusof, Y.A. Modelling of rheological behaviour of soursop juice concentrates using shear rate–temperature–concentration superposition. J. Food Eng. 2013, 118, 380–386. [Google Scholar] [CrossRef]
- ISO 11664-4:2008; Colorimetry—Part 4: CIE 1976 L* a* b* Colour Space. CIE: Tokyo, Japan, 2007.
- Scott, K.J.; Wrolstad, R.E.; Acree, T.E.; An, H.; Decker, E.A.; Penner, M.H.; Reid, D.S.; Schwartz, S.J.; Shoemaker, C.F.; Sporns, P. Current Protocols in Food Analytical Chemistry; J. Wiley: Hoboken, NJ, USA, 2001; p. F2.2.1. [Google Scholar]
- Janiszewska-Turak, E.; Witrowa-Rajchert, D. The influence of carrot pretreatment, type of carrier and disc speed on the physical and chemical properties of spray-dried carrot juice microcapsules. Dry. Technol. 2021, 39, 439–449. [Google Scholar] [CrossRef]
- Adekunte, A.; Tiwari, B.; Cullen, P.; Scannell, A.; O’Donnell, C. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Mason, T.J. Ultrasound Processing of Fluid Foods. In Novel Thermal and Non-Thermal Technologies for Fluid Foods; Academic Press: Cambridge, MA, USA, 2012; pp. 135–165. [Google Scholar]
- Tiwari, B.; O’Donnell, C.; Muthukumarappan, K.; Cullen, P. Effect of low temperature sonication on orange juice quality parameters using response surface methodology. Food Bioprocess Technol. 2009, 2, 109–114. [Google Scholar] [CrossRef]
- Medina-Meza, I.G.; Boioli, P.; Barbosa-Cánovas, G.V. Assessment of the effects of ultrasonics and pulsed electric fields on nutritional and rheological properties of raspberry and blueberry purees. Food Bioprocess Technol. 2016, 9, 520–531. [Google Scholar] [CrossRef]
- Knorr, D.; Zenker, M.; Heinz, V.; Lee, D.-U. Applications and potential of ultrasonics in food processing. Trends Food Sci. Technol. 2004, 15, 261–266. [Google Scholar] [CrossRef]
- Shamsudin, R.; Mohamed, I.O.; Yaman, N.K.M. Thermophysical properties of Thai seedless guava juice as affected by temperature and concentration. J. Food Eng. 2005, 66, 395–399. [Google Scholar] [CrossRef]
- Sinchaipanit, P.; Kerr, W. Effect of reducing pulp-particles on the physical properties of carrot juice. Int. Food Res. J. 2007, 14, 205–214. [Google Scholar]
- Augusto, P.E.D.; Ibarz, A.; Cristianini, M. Effect of high pressure homogenization (HPH) on the rheological properties of tomato juice: Viscoelastic properties and the Cox–Merz rule. J. Food Eng. 2013, 114, 57–63. [Google Scholar] [CrossRef]
- Tibäck, E.; Langton, M.; Oliveira, J.; Ahrné, L. Mathematical modeling of the viscosity of tomato, broccoli and carrot purees under dynamic conditions. J. Food Eng. 2014, 124, 35–42. [Google Scholar] [CrossRef]
- Vandresen, S.; Quadri, M.G.; de Souza, J.A.; Hotza, D. Temperature effect on the rheological behavior of carrot juices. J. Food Eng. 2009, 92, 269–274. [Google Scholar] [CrossRef]
- Bhargava, N.; Mor, R.S.; Kumar, K.; Sharanagat, V.S. Advances in application of ultrasound in food processing: A review. Ultrason. Sonochem. 2020, 70, 105293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhou, C.; Ma, L.; Su, W.; Jiang, J.; Hu, X. Influence of ultrasound on the microbiological, physicochemical properties, and sensory quality of different varieties of pumpkin juice. Heliyon 2024, 10, e27927. [Google Scholar] [CrossRef]
- Laura Patricia, M.-P.; Lisa, F.; Pablo, J. Characterisation of the viscoelastic properties of avocado puree for process design applications. Biosyst. Eng. 2017, 161, 62–69. [Google Scholar] [CrossRef]
- Haminiuk, C.; Sierakowski, M.; Vidal, J.; Masson, M. Influence of temperature on the rheological behavior of whole araçá pulp (Psidium cattleianum sabine). LWT-Food Sci. Technol. 2006, 39, 427–431. [Google Scholar] [CrossRef]
- Belibağli, K.B.; Dalgic, A.C. Rheological properties of sour-cherry juice and concentrate. Int. J. Food Sci. Technol. 2007, 42, 773–776. [Google Scholar] [CrossRef]
- Umair, M.; Jabbar, S.; Senan, A.M.; Sultana, T.; Nasiru, M.M.; Shah, A.A.; Zhuang, H.; Jianhao, Z. Influence of Combined Effect of Ultra-Sonication and High-Voltage Cold Plasma Treatment on Quality Parameters of Carrot Juice. Foods 2019, 8, 593. [Google Scholar] [CrossRef]
- Zapotoczny, P.; Zielinska, M. Rozwazania nad metodyka instrumentalnego pomiaru barwy marchwi. Żywność Nauka Technol. Jakość 2005, 12, 121–132. [Google Scholar]
- Bhangu, S.K.; Ashokkumar, M. Theory of sonochemistry. In Sonochemistry: From Basic Principles to Innovative Applications; Springer: Cham, Switzerland, 2017; pp. 1–28. [Google Scholar]
- Suo, G.; Zhou, C.; Su, W.; Hu, X. Effects of ultrasonic treatment on color, carotenoid content, enzyme activity, rheological properties, and microstructure of pumpkin juice during storage. Ultrason. Sonochem. 2022, 84, 105974. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ma, G.; Ye, X.; Kakuda, Y.; Meng, R. Stability of all-trans-beta-carotene under ultrasound treatment in a model system: Effects of different factors, kinetics and newly formed compounds. Ultrason Sonochem. 2010, 17, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Jabbar, S.; Abid, M.; Hu, B.; Wu, T.; Hashim, M.M.; Lei, S.; Zhu, X.; Zeng, X. Quality of carrot juice as influenced by blanching and sonication treatments. LWT—Food Sci. Technol. 2014, 55, 16–21. [Google Scholar] [CrossRef]
Concentration (°Brix) | Carbohydrates (g/100 mL) | Protein (g/100 mL) | Fat (g/100 mL) | Mineral Content (g/100 mL) | Water (g/100 mL) |
---|---|---|---|---|---|
9 * | 8.79 | 0.22 | 0.04 | 0.30 | 90.65 |
12 | 11.80 | 0.30 | 0.05 | 0.40 | 87.45 |
21 * | 19.92 | 0.51 | 0.08 | 0.68 | 78.81 |
Concentration (°Brix) | Ultrasound (kHz) | Density (kg/m3) | Total Soluble Solid Content (°Brix) |
---|---|---|---|
9 | 0 | 1037 ± 1 ef | 9.1 ± 0.2 e |
12 | 1051 ± 0 d | 12.2 ± 0.1 d | |
21 | 1085 ± 0 b | 21.5 ± 0.1 c | |
9 | 21 | 1037 ± 0 f | 9.2 ± 0.1 e |
12 | 1051 ± 1 cd | 12.3 ± 0.1 d | |
21 | 1086 ± 1 b | 22.8 ± 0.1 a | |
9 | 35 | 1038 ± 0 e | 9.2 ± 0.2 e |
12 | 1051 ± 1 cd | 12.3 ± 0.1 d | |
21 | 1089 ± 1 a | 22.3 ± 0.1 b |
Concentration (°Brix) | US (kHz) | Temperature for Rheology Test (°C) | Apparent Viscosity (η) (Pa∙s) | Consistency Coefficient (K) (Pa∙sn) | Flow Behavior Index (n) (-) | Activation Energy (Ea) (kJ/mol) |
---|---|---|---|---|---|---|
9 | 0 | 20 | 7.79 ± 0.01 op | 2.14 ± 0.11 o–s | 0.33 ± 0.03 b | 16.46 ± 0.23 a |
30 | 7.56 ± 0.31 op | 2.02 ± 0.09 p–s | ||||
40 | 5.70 ± 0.06 p | 1.58 ± 0.06 prs | ||||
50 | 4.17 ± 0.12 p | 1.17 ± 0.05 s | ||||
21 | 20 | 7.78 ± 1.77 op | 2.39 ± 0.07 op | 0.34 ± 0.03 b | 12.46 ± 0.10 c | |
30 | 7.09 ± 1.42 p | 2.14 ± 0.02 prs | ||||
40 | 5.97 ± 0.55 p | 1.68 ± 0.08 prs | ||||
50 | 5.77 ± 0.07 p | 1.54 ± 0.04 rs | ||||
35 | 20 | 9.48 ± 0.49 nop | 1.90 ± 0.18 prs | 0.42 ± 0.04 a | 9.77 ± 0.31 e | |
30 | 8.81 ± 0.10 op | 1.69 ± 0.07 prs | ||||
40 | 8.16 ± 0.21 op | 1.55 ± 0.15 prs | ||||
50 | 6.80 ± 0.04 p | 1.31 ± 0.05 rs | ||||
12 | 0 | 20 | 21.64 ± 0.57 i | 5.39 ± 0.44 lm | 0.36 ± 0.04 b | 14.72 ± 0.13 b |
30 | 20.25 ± 0.48 ijk | 4.87 ± 0.17 m | ||||
40 | 16.88 ± 2.88 i–m | 3.63 ± 0.04 n | ||||
50 | 14.31 ± 1.79 lmn | 3.19 ± 0.03 no | ||||
21 | 20 | 20.56 ± 1.10 ij | 6.88 ± 0.45 jk | 0.27 ± 0.05 c | 8.21 ± 0.04 f | |
30 | 19.34 ± 0.31 i–m | 6.80 ± 0.40 jk | ||||
40 | 17.80 ± 0.57 i–m | 6.05 ± 0.48 kl | ||||
50 | 14.96 ± 0.66 k–n | 5.04 ± 0.39 m | ||||
35 | 20 | 18.53 ± 2.74 i | 7.30 ± 0.65 j | 0.21 ± 0.03 d | 7.74 ± 0.30 g | |
30 | 17.03 ± 0.41 i–m | 7.36 ± 0.08 j | ||||
40 | 15.65 ± 0.65 j–m | 6.68 ± 0.44 jk | ||||
50 | 12.64 ± 0.64 mno | 5.36 ± 0.10 m | ||||
21 | 0 | 20 | 119.84 ± 0.10 b | 40.10 ± 0.45 b | 0.28 ± 0.02 c | 10.82 ± 0.23 d |
30 | 106.44 ± 0.10 d | 35.57 ± 0.06 c | ||||
40 | 88.94 ± 1.17 g | 30.02 ± 0.49 f | ||||
50 | 80.56 ± 0.73 h | 26.77 ± 0.32 h | ||||
21 | 20 | 142.02 ± 0.03 a | 42.23 ± 0.57 a | 0.31 ± 0.05 bc | 9.92 ± 0.10 e | |
30 | 114.12 ± 0.06 c | 33.95 ± 0.33 d | ||||
40 | 100.33 ± 0.46 ef | 29.74 ± 0.23 fg | ||||
50 | 97.09 ± 1.12 f | 29.11 ± 0.53 g | ||||
35 | 20 | 103.47 ± 1.43 de | 33.60 ± 0.79 d | 0.29 ± 0.03 c | 8.24 ± 0.10 f | |
30 | 100.67 ± 1.29 ef | 32.08 ± 0.13 e | ||||
40 | 87.57 ± 4.85 g | 27.06 ± 0.19 h | ||||
50 | 79.21 ± 1.82 h | 25.06 ± 0.15 i |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janiszewska-Turak, E.; Sitkiewicz, I.; Janowicz, M. Influence of Ultrasound on the Rheological Properties, Color, Carotenoid Content, and Other Physical Characteristics of Carrot Puree. Appl. Sci. 2024, 14, 10466. https://doi.org/10.3390/app142210466
Janiszewska-Turak E, Sitkiewicz I, Janowicz M. Influence of Ultrasound on the Rheological Properties, Color, Carotenoid Content, and Other Physical Characteristics of Carrot Puree. Applied Sciences. 2024; 14(22):10466. https://doi.org/10.3390/app142210466
Chicago/Turabian StyleJaniszewska-Turak, Emilia, Iwona Sitkiewicz, and Monika Janowicz. 2024. "Influence of Ultrasound on the Rheological Properties, Color, Carotenoid Content, and Other Physical Characteristics of Carrot Puree" Applied Sciences 14, no. 22: 10466. https://doi.org/10.3390/app142210466
APA StyleJaniszewska-Turak, E., Sitkiewicz, I., & Janowicz, M. (2024). Influence of Ultrasound on the Rheological Properties, Color, Carotenoid Content, and Other Physical Characteristics of Carrot Puree. Applied Sciences, 14(22), 10466. https://doi.org/10.3390/app142210466