Integrated Power and Thermal Management Systems for Civil Aircraft: Review, Challenges, and Future Opportunities
Abstract
:1. Introduction
2. Integrated Power and Thermal Management in Electrified Propulsion Aircraft
2.1. Integrated Power and Thermal Management System
2.2. Electrified Propulsion Aircraft
- DoH for power (HP)
- ○
- ○
- DoH for energy (HE)
- ○
- ○
2.3. Thermal Management System
2.4. Power Management Optimisation
3. IPTMS Architecture Design
3.1. IPTMS with Energy Recovery
3.2. IPTMS with Advanced EPS and TMS
4. IPTMS Power Management Optimisation
5. IPTMS Modelling
6. IPTMS Analysis Method
7. Challenges and Future Opportunities
- Enhanced system integration: future IPTMSs could benefit from higher levels of integration, not only with TMS and PMS but also with other aircraft subsystems.
- Improved system stability and safety: as the complexity of IPTMSs increase, the importance of system stability and safety may also increase.
- Minimisation of system weight and volume: for military and civil aircraft, future IPTMS research should investigate methods to minimise the system weight and volume.
- Minimisation of cooling power and ram air usage: future research should explore approaches to minimise the use of ram air and the power usage of TMS.
- Optimised power management strategies: Future IPTMS should consider the trade-off study between propulsive power and the power usage of TMS. This could lead to the development of optimal battery power supply strategies across the aircraft flight mission.
- Investigation of IPTMS optimisation domain: For different operating conditions and different propulsion requirements, the impacts of the TMS and the PMS would be different. Future IPTMSs should investigate at the system level whether the optimisation of the IPTMS should be in the thermal domain or the power domain.
- Versatility and stability of methods and tools: The methods and tools developed for an IPTMS at the aircraft level should be versatile enough to accommodate different power conditions, flight conditions (e.g., subsonic/supersonic, normal/cold-day/hot-day conditions), and different aircraft platforms. At the same time, the methods and tools should ensure their stability through validation.
- Addressing time-related issues: with the increasing complexity of design, future work should focus on addressing time-related issues, such as computational time or simulation time.
8. Conclusions
- The combination of architecture design (IPTMS with advanced EPS and TMS) and power management optimisation can reduce thermal and power requirements and energy consumption.
- The combination of modelling and analysis methods can facilitate the implementation of modular designs and optimise the overall performance of the aircraft.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Alternating Current |
ACM | Air Cycle Machine |
AEA | All-Electric Aircraft |
APU | Auxiliary Power Unit |
DC | Direct Current |
DP | Dynamic Programming |
ECS | Environmental Control System |
EPA | Electrical Propulsion Aircraft |
EPU | Emergency Power Unit |
GBx | Gearbox |
GT | Gas Turbine |
HEA | Hybrid-Electric Aircraft |
IPTMS | Integrated Power and Thermal Management System |
MEA | More Electric Aircraft |
MPC | Model Predictive Control |
PAO | Polyalphaolephin |
PM | Power Management |
PMP | Pontryagin’s Minimum Principle |
PMS | Power Management System |
SOC | State of Charge |
T2T | Tip-to-Tail |
TMS | Thermal Management System |
References
- OECD. Air and GHG Emissions. Available online: https://www.oecd-ilibrary.org/environment/air-and-ghg-emissions/indicator/english_93d10cf7-en (accessed on 24 April 2023).
- Clarke, D.; Flachenecker, F.; Guidetti, E.; Pionnier, P.-A. CO2 Emissions from Air Transport: A Near-Real-Time Global Database for Policy Analysis. OECD Statistics Working Papers No. 114. 2022. Available online: https://www.oecd-ilibrary.org/economics/co2-emissions-from-air-transport_ecc9f16b-en (accessed on 15 April 2024).
- United Nations. Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 23 August 2022).
- NASA. Strategic Implementation Plan 2017 Update; NASA: Washington, DC, USA, 2017. Available online: https://www.nasa.gov/sites/default/files/atoms/files/sip-2017-03-23-17-high.pdf (accessed on 24 April 2023).
- European Commission Directorate-General for Research and Innovation. Fly the Green Deal—Europe’s Vision for Sustainable Aviation; Publications Office of the European Union: Luxemburg, 2022. [Google Scholar] [CrossRef]
- Schefer, H.; Fauth, L.; Kopp, T.H.; Mallwitz, R.; Friebe, J.; Kurrat, M. Discussion on Electric Power Supply Systems for All Electric Aircraft. IEEE Access 2020, 8, 84188–84216. [Google Scholar] [CrossRef]
- Sinnett, M. 787 No-bleed Systems: Saving Fuel and Enhancing Operational Efficiencies. Aero Quart. 2007, 18, 6–11. [Google Scholar]
- Barzkar, A.; Ghassemi, M. Electric Power Systems in More and All Electric Aircraft: A Review. IEEE Access 2020, 8, 169314–169332. [Google Scholar] [CrossRef]
- Mahefkey, T.; Yerkes, K.; Donovan, B.; Ramalingam, M.L. Thermal Management Challenges for Future Military Aircraft Power Systems. 2004. Available online: https://saemobilus.sae.org/content/2004-01-3204/ (accessed on 24 August 2022).
- Sigthorsson, D.; Oppenheimer, M.W.; Doman, D.B. Aircraft Thermal Endurance Optimization Part I: Using A Mixed Dual Tank Topology and Robust Temperature Regulation. In AIAA Scitech 2019 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2019. [Google Scholar] [CrossRef]
- Powers, R.W.; Hromisin, S.; McLaughlin, D.K.; Morris, P.J.; Pourhashem, H.; Kalkhoran, I.M.; Lowe, K.T.; Nelson, C.C.; Kan, P.; Lewalle, J.; et al. Dynamic Modelling at a Vehicle Level of a Cryogenic Based Thermal System for a High Powered System. In Proceedings of the 57th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 7–11 January 2019; Nuzum, S.R., Donovan, A., Roberts, R.A., Wolf, M., Eds.; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2016; pp. 1–15. [Google Scholar] [CrossRef]
- Aerospace Technology Institute. Accelerating Ambition Foreword Overview of Priorities Air Transport Vision Market Opportunity Vehicles Propulsion and Power Systems Aerostructures Cross-cutting Enablers Economic Impact Closing Remarks. Available online: https://www.ati.org.uk/wp-content/uploads/2021/08/ati-technology-strategy.pdf (accessed on 4 July 2022).
- Ganev, E.; Koerner, M. Power and Thermal Management for Future Aircraft. In Proceedings of the SAE 2013 Aerotech Congress and Exhibition, Montreal, QC, Canada, 24–26 September 2013. [Google Scholar] [CrossRef]
- Van Heerden, A.S.J.; Judt, D.M.; Jafari, S.; Lawson, C.P.; Nikolaidis, T.; Bosak, D. Aircraft thermal management: Practices, technology, system architectures, future challenges, and opportunities. Prog. Aerosp. Sci. 2021, 128, 100767. [Google Scholar] [CrossRef]
- Coutinho, M.; Bento, D.; Souza, A.; Cruz, R.; Afonso, F.; Lau, F.; Suleman, A.; Barbosa, F.R.; Gandolfi, R.; Affonso, W.; et al. A review on the recent developments in thermal management systems for hybrid-electric aircraft. Appl. Therm. Eng. 2023, 227, 120427. [Google Scholar] [CrossRef]
- Asli, M.; König, P.; Sharma, D.; Pontika, E.; Huete, J.; Konda, K.R.; Mathiazhagan, A.; Xie, T.; Höschler, K.; Laskaridis, P. Thermal management challenges in hybrid-electric propulsion aircraft. Prog. Aerosp. Sci. 2024, 144, 100967. [Google Scholar] [CrossRef]
- Zhang, J.; Roumeliotis, I.; Zolotas, A. Sustainable Aviation Electrification: A Comprehensive Review of Electric Propulsion System Architectures, Energy Management, and Control. Sustainability 2022, 14, 5880. [Google Scholar] [CrossRef]
- Blaskovic, K. Power Management System for Electric and Hybryd Marine Vessels. In Proceedings of the 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 27 September–1 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 902–907. [Google Scholar] [CrossRef]
- Isikveren, A.; Kaiser, S.; Pornet, C.; Vratny, P. Pre-design strategies and sizing techniques for dual-energy aircraft. Aircr. Eng. Aerosp. Technol. 2014, 86, 525–542. [Google Scholar] [CrossRef]
- Brelje, B.J.; Martins, J.R.R.A. Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches. Prog. Aerosp. Sci. 2019, 104, 1–19. [Google Scholar] [CrossRef]
- Alrashed, M.; Nikolaidis, T.; Pilidis, P.; Jafari, S. Utilisation of turboelectric distribution propulsion in commercial aviation: A review on NASA’s TeDP concept. Chin. J. Aeronaut. 2021, 34, 48–65. [Google Scholar] [CrossRef]
- Xie, Y.; Savvarisal, A.; Tsourdos, A.; Zhang, D.; Gu, J. Review of hybrid electric powered aircraft, its conceptual design and energy management methodologies. Chin. J. Aeronaut. 2020, 34, 432–450. [Google Scholar] [CrossRef]
- Sahoo, S.; Zhao, X.; Kyprianidis, K. A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft. Aerospace 2020, 7, 44. [Google Scholar] [CrossRef]
- Larminie, J.; Lowry, J. Electric Machines and their Controllers. In Electric Vehicle Technology Explained; Wiley: Hoboken, NJ, USA, 2012; p. 145. [Google Scholar] [CrossRef]
- Gkoutzamanis, V.G.; Tsentis, S.E.; Mylonas, O.S.; Kalfas, A.I.; Kyprianidis, K.G.; Tsirikoglou, P.; Sielemann, M. Thermal Management System Considerations for a Hybrid-Electric Commuter Aircraft. J. Thermophys. Heat Transf. 2022, 36, 650–666. [Google Scholar] [CrossRef]
- Pal, D.; Severson, M. Liquid Cooled System for Aircraft Power Electronics Cooling. In Proceedings of the 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 30 May–2 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 800–805. [Google Scholar] [CrossRef]
- Jafari, S.; Nikolaidis, T. Thermal Management Systems for Civil Aircraft Engines: Review, Challenges and Exploring the Future. Appl. Sci. 2018, 8, 2044. [Google Scholar] [CrossRef]
- Roumeliotis, I.; Castro, L.; Jafari, S.; Pachidis, V.; De Riberolles, L.; Broca, O.; Unlu, D. Integrated Systems Simulation for Assessing Fuel Thermal Management Capabilities for Hybrid-Electric Rotorcraft. In Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, Virtual, 21–25 September 2020. [Google Scholar] [CrossRef]
- Jafari, S.; Bouchareb, A.; Nikolaidis, T. Thermal Performance Evaluation in Gas Turbine Aero Engines Accessory Gearbox. Int. J. Turbomach. Propuls. Power 2020, 5, 21. [Google Scholar] [CrossRef]
- Liu, H.; Wei, Z.; He, W.; Zhao, J. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Convers. Manag. 2017, 150, 304–330. [Google Scholar] [CrossRef]
- Affonso, W.; Gandolfi, R.; dos Reis, R.J.N.; da Silva, C.R.I.; Rodio, N.; Kipouros, T.; Laskaridis, P.; Chekin, A.; Ravikovich, Y.; Ivanov, N.; et al. Thermal Management challenges for HEA-FUTPRINT 50. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1024, 012075. [Google Scholar] [CrossRef]
- U.S. Department of Energy. EERE Success Story—Supercharging Concentrating Solar Power Plant Performance. 2017. Available online: https://www.energy.gov/eere/success-stories/articles/eere-success-story-supercharging-concentrating-solar-power-plant (accessed on 26 April 2023).
- Anselmi, E.; Bunce, I.; Pachidis, V. An Overview of Initial Operational Experience with the Closed-Loop sCO2 Test Facility at Cranfield University. In Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Phoenix, AZ, USA, 17–21 June 2019. [Google Scholar] [CrossRef]
- Eastman Chemical Company. Heat Transfer Fluids. 2020. Available online: https://www.therminol.com/heat-transfer-fluids (accessed on 26 April 2023).
- Ravikumar, R.; Herbert, G.M.J.; Binoy, L.; Ratheesh, R.; Krishnakumar, T.S.; Indulal, C.R. Experimental investigations on the thermal properties of rare earth-metal oxide based therminol nano fluids for heat transfer applications. Sādhanā 2023, 48, 62. [Google Scholar] [CrossRef]
- Merzvinskas, M.; Bringhenti, C.; Tomita, J.; de Andrade, C. Air conditioning systems for aeronautical applications: A review. Aeronaut. J. 2019, 124, 499–532. [Google Scholar] [CrossRef]
- Pérez-Grande, I.; Leo, T.J. Optimization of a commercial aircraft environmental control system. Appl. Therm. Eng. 2002, 22, 1885–1904. [Google Scholar] [CrossRef]
- Ahlers, M.F. Aircraft Thermal Management. In Encyclopedia of Aerospace Engineering; John Wiley & Sons: Chichester, UK, 2011. [Google Scholar] [CrossRef]
- Rheaume, J.M.; MacDonald, M.; Lents, C.E. Commercial Hybrid Electric Aircraft Thermal Management System Design, Simulation, and Operation Improvements. In Proceedings of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, USA, 19–22 August 2019. [Google Scholar] [CrossRef]
- Annapragada, R.; Sur, A.; Mahmoudi, R.; Macdonald, M.; Lents, C.E. Hybrid Electric Aircraft Battery Heat Acquisition System. In Proceedings of the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, OH, USA, 12–14 July 2018; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2018. [Google Scholar] [CrossRef]
- Kellermann, H.; Habermann, A.L.; Vratny, P.C.; Hornung, M. Assessment of fuel as alternative heat sink for future aircraft. Appl. Therm. Eng. 2020, 170, 114985. [Google Scholar] [CrossRef]
- Heersema, N.; Jansen, R.; Kiris, C.C.; Chau, T.; Machado, L.M.; Duensing, J.C.; Mirhashemi, A.; Chapman, J.; French, B.D.; Miller, L.; et al. Thermal Management System Trade Study for SUSAN Electrofan Aircraft. In AIAA SCITECH 2022 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2022. [Google Scholar] [CrossRef]
- Sozer, E.; Maldonado, D.; Bhamidapati, K.; Schnulo, S.L. Computational Evaluation of an OML-based Heat Exchanger Concept for HEATheR. In AIAA Propulsion and Energy 2020 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020. [Google Scholar] [CrossRef]
- Schnulo, S.L.; Chapman, J.W.; Hanlon, P.; Hasseeb, H.; Jansen, R.; Sadey, D.; Sozer, E.; Jensen, J.; Maldonado, D.; Bhamidapati, K.; et al. Assessment of the Impact of an Advanced Power System on a Turboelectric Single-Aisle Concept Aircraft. In AIAA Propulsion and Energy 2020 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020; pp. 1–18. [Google Scholar] [CrossRef]
- Wang, T.; Tseng, K.; Zhao, J.; Wei, Z. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Appl. Energy 2014, 134, 229–238. [Google Scholar] [CrossRef]
- Simon, D.L.; Connolly, J.W.; Culley, D.E. Control Technology Needs for Electrified Aircraft Propulsion Systems. J. Eng. Gas Turbines Power 2019, 142, 11025. [Google Scholar] [CrossRef]
- Olatomiwa, L.; Mekhilef, S.; Ismail, M.; Moghavvemi, M. Energy management strategies in hybrid renewable energy systems: A review. Renew. Sustain. Energy Rev. 2016, 62, 821–835. [Google Scholar] [CrossRef]
- Gong, X.; Wang, J.; Ma, B.; Lu, L.; Hu, Y.; Chen, H. Real-Time Integrated Power and Thermal Management of Connected HEVs Based on Hierarchical Model Predictive Control. IEEE/ASME Trans. Mechatron. 2021, 26, 1271–1282. [Google Scholar] [CrossRef]
- Cinar, G.; Mavris, D.N.; Emeneth, M.; Schneegans, A.; Fefermann, Y. Development of Parametric Power Generation and Distribution Subsystem Models at the Conceptual Aircraft Design Stage. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar] [CrossRef]
- Brahma, A.; Guezennec, Y.; Rizzoni, G. Optimal energy management in series hybrid electric vehicles. In Proceedings of the 2000 American Control Conference, Chicago, IL, USA, 28–30 June 2000; Volume 1, pp. 60–64. [Google Scholar] [CrossRef]
- Wang, R.; Lukic, S.M. Dynamic Programming Technique in Hybrid Electric Vehicle Optimization. In Proceedings of the 2012 IEEE International Electric Vehicle Conference, Greenville, SC, USA, 4–8 March 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Chen, Z.; Mi, C.C.; Xu, J.; Gong, X.; You, C. Energy Management for a Power-Split Plug-in Hybrid Electric Vehicle Based on Dynamic Programming and Neural Networks. IEEE Trans. Veh. Technol. 2014, 63, 1567–1580. [Google Scholar] [CrossRef]
- Pérez, L.V.; Bossio, G.R.; Moitre, D.; García, G.O. Optimization of power management in an hybrid electric vehicle using dynamic programming. Math. Comput. Simul. 2006, 73, 244–254. [Google Scholar] [CrossRef]
- Gao, J.-P.; Zhu, G.-M.G.; Strangas, E.G.; Sun, F.-C. Equivalent fuel consumption optimal control of a series hybrid electric vehicle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2009, 223, 1003–1018. [Google Scholar] [CrossRef]
- Sciarretta, A.; Back, M.; Guzzella, L. Optimal Control of Parallel Hybrid Electric Vehicles. IEEE Trans. Control Syst. Technol. 2004, 12, 352–363. [Google Scholar] [CrossRef]
- Pisu, P.; Rizzoni, G. A Comparative Study Of Supervisory Control Strategies for Hybrid Electric Vehicles. IEEE Trans. Control Syst. Technol. 2007, 15, 506–518. [Google Scholar] [CrossRef]
- Musardo, C.; Rizzoni, G.; Guezennec, Y.; Staccia, B. A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management. Eur. J. Control 2005, 11, 509–524. [Google Scholar] [CrossRef]
- Tang, L.; Rizzoni, G.; Onori, S. Energy Management Strategy for HEVs Including Battery Life Optimization. IEEE Trans. Transp. Electrif. 2015, 1, 211–222. [Google Scholar] [CrossRef]
- Hongli, Z.; Yu, H.; Liang, C. Experimental study on a small Brayton air refrigerator under −120 °C. Appl. Therm. Eng. 2009, 29, 1702–1706. [Google Scholar] [CrossRef]
- Kabir, R.; Kaddoura, K.; McCluskey, P.; Kizito, J.P. Investigation of a Cooling System for a Hybrid Airplane. In 2018 AIAA/IEEE Electric Aircraft Technologies Symposium; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2018. [Google Scholar] [CrossRef]
- Yu, S.; Ganev, E. Next Generation Power and Thermal Management System. SAE Int. J. Aerosp. 2008, 1, 1107–1121. [Google Scholar] [CrossRef]
- Lui, C.; Dooley, M. Electric Thermal Management Architectures; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Newman, R.W.; Dooley, M.; Lui, C. Efficient propulsion, power, and thermal management integration. In Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Virtual, 15 July 2013; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2013. [Google Scholar] [CrossRef]
- Abolmoali, P.; Parrilla, J.A.; Hamed, A. Integrated Aircraft Thermal Management & Power Generation: Reconfiguration of a Closed Loop Air Cycle System as a Brayton Cycle Gas Generator to Support Auxiliary Electric Power Generation; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2014. [Google Scholar] [CrossRef]
- Payne, N.; Wolff, M.; Roberts, R.; Elston, L.; McCoppin, J. Experimental Validation of a Combined Thermal Management and Power Generation System using a MultiMode Rankine Cycle. In AIAA Propulsion and Energy 2020 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020; pp. 1–17. [Google Scholar] [CrossRef]
- Stoia, M.F.; Ek, G.W.; Bowcutt, K.G.; Needels, J.T. Integrated Power and Thermal Management System for High Speed Aircraft. In AIAA Propulsion and Energy 2021 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2021. [Google Scholar] [CrossRef]
- Rheaume, J.; Lents, C.E. Design and Simulation of a Commercial Hybrid Electric Aircraft Thermal Management System. In Proceedings of the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, OH, USA, 12–14 July 2018; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2018. [Google Scholar] [CrossRef]
- Kim, J.; Kwon, K.; Roy, S.; Garcia, E.; Mavris, D.N. Megawatt-Class Turboelectric Distributed Propulsion, Power, and Thermal SYSTEMS for aircraft. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2018. [Google Scholar] [CrossRef]
- Chapman, J.W.; Hasseeb, H.; Schnulo, S.L. Thermal Management System Design for Electrified Aircraft Propulsion Concepts. In AIAA Propulsion and Energy 2020 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020; pp. 1–23. [Google Scholar] [CrossRef]
- Thomas, G.L.; Chapman, J.W.; Hasseeb, H.; Alencar, J.F.; Sadey, D.; Csank, J. Multidisciplinary Systems Analysis of a Six Passenger Quadrotor Urban Air Mobility Vehicle Powertrain. In AIAA Propulsion and Energy 2020 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020; pp. 1–22. [Google Scholar] [CrossRef]
- Abolmoali, P.C.; Donovan, A.B.; Patnaik, S.S.; McCarthy, P.; Dierker, D.; Jones, N.; Buettner, R. Integrated Propulsive and Thermal Management System Design for Optimal Hybrid Electric Aircraft Performance. In AIAA Propulsion and Energy 2020 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020; pp. 1–17. [Google Scholar] [CrossRef]
- Coutinho, M.; Afonso, F.; Souza, A.; Bento, D.; Gandolfi, R.; Barbosa, F.R.; Lau, F.; Suleman, A. A Study on Thermal Management Systems for Hybrid–Electric Aircraft. Aerospace 2023, 10, 745. [Google Scholar] [CrossRef]
- Larsson, V.; Johannesson, L.; Egardt, B. Analytic Solutions to the Dynamic Programming Subproblem in Hybrid Vehicle Energy Management. IEEE Trans. Veh. Technol. 2015, 64, 1458–1467. [Google Scholar] [CrossRef]
- Sergent, A.; Ramunno, M.; D’Arpino, M.; Canova, M.; Perullo, C. Optimal Sizing and Control of Battery Energy Storage Systems for Hybrid Turboelectric Aircraft. SAE Int. J. Adv. Curr. Pract. Mobil. 2020, 2, 1266–1278. [Google Scholar] [CrossRef]
- Fares, D.; Chedid, R.; Panik, F.; Karaki, S.; Jabr, R. Dynamic programming technique for optimizing fuel cell hybrid vehicles. Int. J. Hydrogen Energy 2015, 40, 7777–7790. [Google Scholar] [CrossRef]
- Leite, J.P.S.P.; Voskuijl, M. Optimal energy management for hybrid-electric aircraft. Aircr. Eng. Aerosp. Technol. 2020, 92, 851–861. [Google Scholar] [CrossRef]
- Hou, C.; Ouyang, M.; Xu, L.; Wang, H. Approximate Pontryagin’s minimum principle applied to the energy management of plugin hybrid electric vehicles. Appl. Energy 2014, 115, 174–189. [Google Scholar] [CrossRef]
- Onori, S.; Serrao, L.; Rizzoni, G. Hybrid Electric Vehicles; Springer Science and Business Media LLC: Dordrecht, The Netherlands, 2016. [Google Scholar]
- Nguyen, B.-H.; Vo-Duy, T.; Ta, M.C.; Trovao, J.P.F. Optimal Energy Management of Hybrid Storage Systems Using an Alternative Approach of Pontryagin’s Minimum Principle. IEEE Trans. Transp. Electrif. 2021, 7, 2224–2237. [Google Scholar] [CrossRef]
- Hu, Q.; Amini, M.R.; Wang, H.; Kolmanovsky, I.; Sun, J. Integrated Power and Thermal Management of Connected HEVs via Multi-Horizon MPC. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 3053–3058. [Google Scholar] [CrossRef]
- Koeln, J.P.; Pangborn, H.C.; Williams, M.A.; Kawamura, M.L.; Alleyne, A.G. Hierarchical Control of Aircraft Electro-Thermal Systems. IEEE Trans. Control Syst. Technol. 2019, 28, 1218–1232. [Google Scholar] [CrossRef]
- Pangborn, H.C.; Williams, M.A.; Koeln, J.P.; Alleyne, A.G. Graph-Based Hierarchical Control of Thermal-Fluid Power Flow Systems. In Proceedings of the American Control Conference, Seattle, WA, USA, 24–26 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2099–2105. [Google Scholar] [CrossRef]
- Williams, M.A.; Koeln, J.P.; Pangborn, H.C.; Alleyne, A.G. Dynamical Graph Models of Aircraft Electrical, Thermal, and Turbomachinery Components. J. Dyn. Syst. Meas. Control 2018, 140, 041013. [Google Scholar] [CrossRef]
- Aksland, C.T.; Tannous, P.J.; Wagenmaker, M.J.; Pangborn, H.C.; Alleyne, A.G. Hierarchical Predictive Control of an Unmanned Aerial Vehicle Integrated Power, Propulsion, and Thermal Management System. IEEE Trans. Control Syst. Technol. 2023, 31, 1280–1295. [Google Scholar] [CrossRef]
- Misley, A.A.; D’Arpino, M.; Ramesh, P.; Canova, M. A real-time energy management strategy for hybrid electric aircraft propulsion systems. In AIAA Propulsion and Energy 2021 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2021. [Google Scholar] [CrossRef]
- Wolff, M. Integrated Thermal/Power/Propulsion/Vehicle Modeling Issues Related to a More Electric Aircraft Architecture. Wright-Patterson AFB: NATO. 2010; p. 1–26. Available online: https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/RTO-MP-AVT-178/MP-AVT-178-28.pdf (accessed on 9 December 2021).
- Roberts, R.; Eastbourn, S.; Maser, A. Generic aircraft thermal tip-to-tail modeling and simulation. In Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Diego, CA, USA, 31 July–3 August 2011; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2011. [Google Scholar] [CrossRef]
- Roberts, R.; Eastbourn, S. Vehicle Level Tip-to-Tail Modeling of an Aircraft. Int. J. Thermodyn. 2014, 17, 107–115. [Google Scholar] [CrossRef]
- Roberts, R.A.; Decker, D.D. Control Architecture Study Focused on Energy Savings of an Aircraft Thermal Management System. J. Dyn. Syst. Meas. Control 2014, 136, 041003. [Google Scholar] [CrossRef]
- Roberts, R.A.; Wolff, M.; Nuzum, S.; Donovan, A. Assessment of the Vehicle Level Impact for a SOFC Integrated with the Power and Thermal Management System of an Air Vehicle. In Proceedings of the ASME 2015 Dynamic Systems and Control Conference, Columbus, OH, USA, 28–30 October 2015; American Society of Mechanical Engineers: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Szargut, J.; Morris, D.R.; Steward, F.R. Exergy Analysis of Thermal, Chemical, and Metallurgical Processes; Hemisphere Publishing Corporation: Washington, DC, USA, 1987. [Google Scholar]
- Bejan, A. A Role for Exergy Analysis and Optimization in Aircraft Energy-System Design. In Advanced Energy Systems; American Society of Mechanical Engineers: New York, NY, USA, 1999; pp. 209–217. [Google Scholar] [CrossRef]
- Figliola, R.S.; Tipton, R.; Li, H. Exergy Approach to Decision-Based Design of Integrated Aircraft Thermal Systems. J. Aircr. 2003, 40, 49–55. [Google Scholar] [CrossRef]
- Maser, A.; Garcia, E.; Mavris, D. Characterization of thermodynamic irreversibility for integrated propulsion and thermal management systems design. In Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–11 January 2012. [Google Scholar] [CrossRef]
- Rong, A.; Pang, L.; Jiang, X.; Qi, B.; Shi, Y. Analysis and comparison of potential power and thermal management systems for high-speed aircraft with an optimization method. Energy Built Environ. 2021, 2, 13–20. [Google Scholar] [CrossRef]
- Walters, E.; Amrhein, M.; O’Connell, T.; Iden, S.; Lamm, P.; Yerkes, K.; Wolff, M.; McCarthy, K.; Raczkowski, B.; Wells, J.; et al. INVENT Modeling, Simulation, Analysis and Optimization. In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2010. [Google Scholar] [CrossRef]
- Dooley, M.; Lui, N.; Newman, R.; Lui, C. Aircraft Thermal Management—Heat Sink Challenge. In Proceedings of the SAE 2014 Aerospace Systems and Technology Conference, Cincinnati, OH, USA, 23–25 September 2014. [Google Scholar] [CrossRef]
Aircraft Type | DoH for Power | DoH for Energy |
---|---|---|
Conventional aircraft | 0 | 0 |
Series HEA | 1 | <1 |
Turboelectric | >0 | 0 |
Parallel HEA | <1 | <1 |
AEA | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, Z.; Nikolaidis, T.; Jafari, S. Integrated Power and Thermal Management Systems for Civil Aircraft: Review, Challenges, and Future Opportunities. Appl. Sci. 2024, 14, 3689. https://doi.org/10.3390/app14093689
Ouyang Z, Nikolaidis T, Jafari S. Integrated Power and Thermal Management Systems for Civil Aircraft: Review, Challenges, and Future Opportunities. Applied Sciences. 2024; 14(9):3689. https://doi.org/10.3390/app14093689
Chicago/Turabian StyleOuyang, Zeyu, Theoklis Nikolaidis, and Soheil Jafari. 2024. "Integrated Power and Thermal Management Systems for Civil Aircraft: Review, Challenges, and Future Opportunities" Applied Sciences 14, no. 9: 3689. https://doi.org/10.3390/app14093689
APA StyleOuyang, Z., Nikolaidis, T., & Jafari, S. (2024). Integrated Power and Thermal Management Systems for Civil Aircraft: Review, Challenges, and Future Opportunities. Applied Sciences, 14(9), 3689. https://doi.org/10.3390/app14093689