Numerical Study for the Design of a Thermal Energy Storage System with Multiple Tunnels Based on Phase Change Material: Case Study Mining in Chile (Thermal Storage in Off-Grid Industrial Applications)
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Configuration
2.2. Numerical Model
2.2.1. Transient Term of the Energy Balance for the HTF
2.2.2. Temporary Term of the Energy Balance for the Solid Material
2.2.3. Energy Balance Time Terms for PCM Configuration
- Solve steering Equation (10) for the entry point
- Monitor the temperature at each time step given in Equation (11). If the temperature is greater than the melting temperature, the solution for that time step and the subsequent ones is obtained with the phase change Equations (8) and (10).
- For each time step solved using Equation (10), the melting ratio ζ is monitored. When its value exceeds 1, the solution for that time step and the subsequent ones must be solved using Equation (11).
- Add a spatial step, and repeat all the steps above.
2.2.4. Boundary Conditions
- Discharge process;
- Charge process;
- Discharge process;
- Charge process;
3. Model Validation
3.1. Model Convergence
Mesh Dimension
4. Results and Discussion
4.1. Case of Study
4.2. Sizing Thermal Storage Tank
4.2.1. Sizing Validation
4.2.2. Thermal Efficiency
4.2.3. Temperature Degradation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | the sectional area of the tank | Greek Symbols | |
Aij | matrix of advective and diffusive terms | Θ | dimensionless temperature |
Bii | matrix of conductive terms | Λ | dimensionless thermal flow |
C | specific heat | Π | dimensionless charging/discharging period |
Ci | coupling matrix for the solid fill material | Ψ | dimensionless time |
CF | inertial dimensionless coefficient | δ | boundary layer thickness |
D | larger diameter | porosity | |
Di | resolution matrix for the solid fill material | ζ | proportion of liquid mass with respect to total mass |
E | singular matrix | η | thermal storage efficiency |
EX,Ψ | dimensionless energy | ρ | density |
Fi | resolution matrix for heat transfer fluid | dimensionless fractional heat capacitance ratio | |
f | form factor | Subscripts | |
H | height | C | cold |
k | thermal conductivity | disc | discharge |
mass flow | f | fluid | |
n | number of nodes | H | hot |
t | time | i | position of each node |
T | temperature | in | inner |
Uj | dependent variables matrix | L | low |
X | dimensionless axial coordinate | m | melting |
out | out | ||
r | radial | ||
pcm | phase change material | ||
ss | sectional |
References
- Yuan, H.; Tsukuda, T.; Yang, Y.; Shibata, G.; Kobashi, Y.; Ogawa, H. Effects of Chemical Compositions and Cetane Number of Fischer–Tropsch Fuels on Diesel Engine Performance. Energies 2022, 15, 4047. [Google Scholar] [CrossRef]
- Choi, Y.H.; Jang, Y.J.; Park, H.; Kim, W.Y.; Lee, Y.H.; Choi, S.H.; Lee, J.S. Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels. Appl. Catal. B Environ. 2017, 202, 605–610. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Guo, H.; Wang, Z. Performance Analysis of Ship Exhaust Gas Temperature Differential Power Generation. Energies 2022, 15, 3900. [Google Scholar] [CrossRef]
- Trapani, K.; Millar, D.L. Floating photovoltaic arrays to power the mining industry: A case study for the McFaulds lake (Ring of Fire). Environ. Prog. Sustain. Energy 2016, 35, 898–905. [Google Scholar] [CrossRef]
- McCormick, P.G.; Suehrcke, H. The effect of intermittent solar radiation on the performance of PV systems. Sol. Energy 2018, 171, 667–674. [Google Scholar] [CrossRef]
- Jabir, M.; Illias, H.A.; Raza, S.; Mokhlis, H. Intermittent Smoothing Approaches for Wind Power Output: A Review. Energies 2017, 10, 1572. [Google Scholar] [CrossRef]
- Acar, C. A comprehensive evaluation of energy storage options for better sustainability. Int. J. Energy Res. 2018, 42, 3732–3746. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, X.; Yang, L.; Xu, C.; Du, X. The Heat Transfer of Microencapsulated Phase Change Material Slurry and Its Thermal Energy Storage Performance of Combined Heat and Power Generating Units. Energies 2017, 10, 1662. [Google Scholar] [CrossRef]
- Wang, K.; Qin, Z.; Tong, W.; Ji, C. Thermal Energy Storage for Solar Energy Utilization: Fundamentals and Applications. In Renewable Energy—Resources, Challenges and Applications; Al Qubeissi, M., El-kharouf, A., Soyhan, H.S., Eds.; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar] [CrossRef]
- Calise, F.; D’Accadia, M.; Barletta, C.; Battaglia, V.; Pfeifer, A.; Duic, N. Detailed Modelling of the Deep Decarbonisation Scenarios with Demand Response Technologies in the Heating and Cooling Sector: A Case Study for Italy. Energies 2017, 10, 1535. [Google Scholar] [CrossRef]
- Khoshbaf, M.J.; Orozco, J.C. Thermal Energy Storage in CSP Technologies: From Commercialized to Innovative Solutions; French National Center for Scientific Research: Paris, France, 2018. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. A Comprehensive Review of Thermal Energy Storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef]
- Leśko, M.; Bujalski, W.; Futyma, K. Operational optimization in district heating systems with the use of thermal energy storage. Energy 2018, 165, 902–915. [Google Scholar] [CrossRef]
- Li, B.; Zhang, J.; Yan, H.; Zhou, N.; Li, M.; Liu, H. Numerical investigation into the effects of geologic layering on energy performances of thermal energy storage in underground mines. Geothermics 2022, 102, 102403. [Google Scholar] [CrossRef]
- Steinmann, W.-D. Thermal energy storage systems for concentrating solar power (CSP) technology. In Advances in Thermal Energy Storage Systems; Elsevier: Amsterdam, The Netherlands, 2015; pp. 511–531. [Google Scholar] [CrossRef]
- Codd, D.S.; Gil, A.; Manzoor, M.T.; Tetreault-Friend, M. Concentrating Solar Power (CSP)—Thermal Energy Storage (TES) Advanced Concept Development and Demonstrations. Curr. Sustain. Renew. Energy Rep. 2020, 7, 17–27. [Google Scholar] [CrossRef]
- Liu, M.; Tay, N.H.S.; Bell, S.; Belusko, M.; Jacob, R.; Will, G.; Saman, W.; Bruno, F. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew. Sustain. Energy Rev. 2016, 53, 1411–1432. [Google Scholar] [CrossRef]
- Alva, G.; Lin, Y.; Fang, G. An overview of thermal energy storage systems. Energy 2018, 144, 341–378. [Google Scholar] [CrossRef]
- Chang, Z.; Li, X.; Xu, C.; Chang, C.; Wang, Z.; Zhang, Q.; Liao, Z.; Li, Q. The effect of the physical boundary conditions on the thermal performance of molten salt thermocline tank. Renew. Energy 2016, 96, 190–202. [Google Scholar] [CrossRef]
- Ghezelbash, G.; Babaelahi, M.; Saadatfar, M. New analytical solution and optimization of a thermocline solar energy storage using differential quadrature method and genetic programming. J. Energy Storage 2022, 52, 104806. [Google Scholar] [CrossRef]
- Stengler, J.; Linder, M. Thermal energy storage combined with a temperature boost: An underestimated feature of thermochemical systems. Appl. Energy 2020, 262, 114530. [Google Scholar] [CrossRef]
- Faraj, K.; Khaled, M.; Faraj, J.; Hachem, F.; Castelain, C. Phase change material thermal energy storage systems for cooling applications in buildings: A review. Renew. Sustain. Energy Rev. 2020, 119, 109579. [Google Scholar] [CrossRef]
- Faas, S.; Thorne, L.; Fuchs, E.; Gilbertsen, N. 10 MW/sub e/Solar Thermal Central Receiver Pilot Plant: Thermal Storage Subsystem Evaluation. Final Report; Sandia National Lab.: Livermore, CA, USA, 1986. [Google Scholar] [CrossRef]
- Wu, M.; Li, M.; Xu, C.; He, Y.; Tao, W. The impact of concrete structure on the thermal performance of the dual-media thermocline thermal storage tank using concrete as the solid medium. Appl. Energy 2014, 113, 1363–1371. [Google Scholar] [CrossRef]
- Van Lew, J.T.; Li, P.; Chan, C.L.; Karaki, W.; Stephens, J. Transient Heat Delivery and Storage Process in a Thermocline Heat Storage System. In Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition: Volume 6: Emerging Technologies: Alternative Energy Systems; Energy Systems: Analysis, Thermodynamics and Sustainability, Lake Buena Vista, FL, USA, 13–19 November 2009; pp. 139–148. [Google Scholar] [CrossRef]
- Wen, P.; Van, J.; Karaki, W.; Lik, C.; Stephens, J.; James, E. Transient Heat Transfer and Energy Transport in Packed Bed Thermal Storage Systems. In Developments in Heat Transfer; Dos Santos Bernardes, M.A., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Z.; He, Y.; Li, X.; Bai, F. Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system. Appl. Energy 2012, 92, 65–75. [Google Scholar] [CrossRef]
- Strasser, M.N.; Selvam, R.P. A Cost and Performance Comparison of Packed Bed and Structured Thermocline Thermal Energy Storage Systems. Sol. Energy 2014, 108, 390–402. [Google Scholar] [CrossRef]
- Gokon, N.; Yamaguchi, T.; Kodama, T. Cyclic thermal storage/discharge performances of a hypereutectic Cu-Si alloy under vacuum for solar thermochemical process. Energy 2016, 113, 1099–1108. [Google Scholar] [CrossRef]
- Risueño, E.; Faik, A.; Gil, A.; Rodríguez-Aseguinolaza, J.; Tello, M.; D’Aguanno, B. Zinc-rich eutectic alloys for high energy density latent heat storage applications. J. Alloys Compd. 2017, 705, 714–721. [Google Scholar] [CrossRef]
- Koide, H.; Kurniawan, A.; Takahashi, T.; Kawaguchi, T.; Sakai, H.; Sato, Y.; Chiu, J.N.W.; Nomura, T. Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material. Energy 2022, 238, 121746. [Google Scholar] [CrossRef]
- Kenisarin, M.M. High-temperature phase change materials for thermal energy storage. Renew. Sustain. Energy Rev. 2010, 14, 955–970. [Google Scholar] [CrossRef]
- Liang, H.; Niu, J.; Gan, Y. Performance optimization for shell-and-tube PCM thermal energy storage. J. Energy Storage 2020, 30, 101421. [Google Scholar] [CrossRef]
- Elfeky, K.E.; Li, X.; Ahmed, N.; Lu, L.; Wang, Q. Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants. Appl. Energy 2019, 243, 175–190. [Google Scholar] [CrossRef]
- Schumann, T.E.W. Heat transfer: A liquid flowing through a porous prism. J. Frankl. Inst. 1929, 208, 405–416. [Google Scholar] [CrossRef]
- Pacheco, J.E.; Showalter, S.K.; Kolb, W.J. Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants. J. Sol. Energy Eng. 2002, 124, 153–159. [Google Scholar] [CrossRef]
- Hoffmann, J.-F.; Fasquelle, T.; Goetz, V.; Py, X. A thermocline thermal energy storage system with filler materials for concentrated solar power plants: Experimental data and numerical model sensitivity to different experimental tank scales. Appl. Therm. Eng. 2016, 100, 753–761. [Google Scholar] [CrossRef]
- Van Lew, J.T.; Li, P.; Chan, C.L.; Karaki, W.; Stephens, J. Analysis of Heat Storage and Delivery of a Thermocline Tank Having Solid Filler Material. J. Sol. Energy Eng. 2011, 133, 021003. [Google Scholar] [CrossRef]
- Amano, R.; Sundén, B. (Eds.) Computational Fluid Dynamics and Heat Transfer: Emerging Topics; WIT: Southampton, UK; Boston, MA, USA, 2011. [Google Scholar]
- Caliano, M.; Bianco, N.; Graditi, G.; Mongibello, L. Analysis of a phase change material-based unit and of an aluminum foam/phase change material composite-based unit for cold thermal energy storage by numerical simulation. Appl. Energy 2019, 256, 113921. [Google Scholar] [CrossRef]
- Bian, Z.; Hou, F.; Bai, Y.; Dong, Q.; Wang, H. Composited phase change material with hierarchical metal foam for efficient thermal energy management. Appl. Therm. Eng. 2024, 236, 121745. [Google Scholar] [CrossRef]
- Despotovic, M.; Nedic, V.; Despotovic, D.; Cvetanovic, S. Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renew. Sustain. Energy Rev. 2016, 56, 246–260. [Google Scholar] [CrossRef]
- LeVeque, R.J. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, 1st ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2007. [Google Scholar] [CrossRef]
- Comisión Nacional de Energía del Gobierno de Chile, Balance nacional de energía—Energía Abierta|Comisión Nacional de Energía. 2021. Available online: http://energiaabierta.cl/visualizaciones/balance-de-energia/ (accessed on 28 March 2023).
- Sernageomin, Decreto 86: Reglamento de Construcción y Operación de Tranques de Relaves. 2007. Available online: https://www.bcn.cl/leychile/navegar?idNorma=193450 (accessed on 10 April 2023).
- Mapas de Localización Depósito de Relaves, SERNAGEOMIN (n.d.). Available online: https://www.sernageomin.cl/mapas-de-localizacion-deposito-de-relaves/ (accessed on 14 April 2023).
- MAPA_PICA_500K.jpg (2244 × 2953), (n.d.). Available online: https://www.sernageomin.cl/pdf/mineria/relaves/MAPA_PICA_500K.jpg (accessed on 14 April 2023).
- Explorador Solar; n.d. Available online: https://solar.minenergia.cl/inicio (accessed on 2 April 2024).
- Neises, T.; Wagner, M.J. Simulation of Direct Steam Power Tower Concentrated Solar Plant. In Proceedings of the ASME 2012 6th International Conference on Energy Sustainability, Parts A and B, American Society of Mechanical Engineers, San Diego, CA, USA, 23–26 July 2012; pp. 499–507. [Google Scholar] [CrossRef]
- Battleson, K. Solar Power Tower Design Guide: Solar Thermal Central Receiver Power Systems. A Source of Electricity and/or Process Heat; Sandia National Lab.: Livermore, CA, USA, 1981. [Google Scholar] [CrossRef]
- Blair, N.; DiOrio, N.; Freeman, J.; Gilman, P.; Janzou, S.; Neises, T.; Wagner, M. System Advisor Model (SAM) General Description (Version 2017.9.5). 2018. Available online: https://www.nrel.gov/docs/fy18osti/70414.pdf (accessed on 18 April 2023).
- Laube, T.; Marocco, L.; Niedermeier, K.; Pacio, J.; Wetzel, T. Thermodynamic Analysis of High-Temperature Energy Storage Concepts Based on Liquid Metal Technology. Energy Technol. 2020, 8, 1900908. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Capacity | 2.3 | [MWh] |
Working Fluid | Solar Molten Salt | - |
Solid fill material | Quartzite rock and silica sand | - |
Insulating material | Fiberglass | - |
Insulating layer | 23 | [cm] |
Discharge time | 2.5 | [h] |
Tank height | 6.1 | [m] |
Tank diameter | 3 | [m] |
Volume | 42 | [m3] |
Porosity | 0.22 | - |
Particle diameter | 0.0191 | [m] |
Mass flow | 5.46 | [kg/s] |
TH | 396 | [°C] |
TC | 289 | [°C] |
Time Interval | 0.5 | [h] |
Configuration | Porous bed | - |
t [h] | MAE | RMSE | MRAE | RRMSE [%] |
---|---|---|---|---|
0.5 | 0.063 | 0.079 | 0.110 | 5.650 |
1.0 | 0.050 | 0.075 | 0.275 | 5.987 |
1.5 | 0.033 | 0.043 | 0.106 | 3.811 |
2.0 | 0.034 | 0.039 | 0.393 | 5.055 |
2.5 | 0.071 | 0.090 | 0.535 | 6.514 |
Parameter | Value | Unit |
---|---|---|
Capacity | 384.8 | [kWh] |
Working fluid | Cerrolow 117 | - |
PCM material | AlSi12 | - |
Thermal Conductivity | 121 | [W/mK] |
Melting Point (average) | 578 | [°C] |
Specific Heat Capacity | 963 | [J/kg K] |
Density | 2.66 | [g/cm3] |
Latent Heat of Fusion | 389 | [J/g] |
Download time | 13 | [h] |
Loading time | 13 | [h] |
Tank height | 1.8 | [m] |
Tank diameter | 0.85 | [m] |
Volume | 0.81 | [m3] |
Porosity | 0.21 | - |
Mass flow | 0.49 | [kg/s] |
TH | 600 | [°C] |
TC | 290 | [°C] |
Configuration | Block with multiple tunnels | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuñez, S.M.; Trujillo Preuss, F.E.; Masip Macía, Y. Numerical Study for the Design of a Thermal Energy Storage System with Multiple Tunnels Based on Phase Change Material: Case Study Mining in Chile (Thermal Storage in Off-Grid Industrial Applications). Appl. Sci. 2024, 14, 3690. https://doi.org/10.3390/app14093690
Nuñez SM, Trujillo Preuss FE, Masip Macía Y. Numerical Study for the Design of a Thermal Energy Storage System with Multiple Tunnels Based on Phase Change Material: Case Study Mining in Chile (Thermal Storage in Off-Grid Industrial Applications). Applied Sciences. 2024; 14(9):3690. https://doi.org/10.3390/app14093690
Chicago/Turabian StyleNuñez, Suleivys M., Felipe E. Trujillo Preuss, and Yunesky Masip Macía. 2024. "Numerical Study for the Design of a Thermal Energy Storage System with Multiple Tunnels Based on Phase Change Material: Case Study Mining in Chile (Thermal Storage in Off-Grid Industrial Applications)" Applied Sciences 14, no. 9: 3690. https://doi.org/10.3390/app14093690
APA StyleNuñez, S. M., Trujillo Preuss, F. E., & Masip Macía, Y. (2024). Numerical Study for the Design of a Thermal Energy Storage System with Multiple Tunnels Based on Phase Change Material: Case Study Mining in Chile (Thermal Storage in Off-Grid Industrial Applications). Applied Sciences, 14(9), 3690. https://doi.org/10.3390/app14093690