Performance of Nanostructures within InGaN-Based Multiquantum-Well Light-Emitting Devices
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Nakamura, S.; Fasol, G. The Blue Laser Diode; Springer: Berlin, Germany, 1997. [Google Scholar]
- Nakamura, S.; Senoh, M.; Nagahama, S.I.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiyoku, H.; Sugimoto, Y. InGaN-Based Multi-Quantum-Well-Structure Laser Diodes. Jpn. J. Appl. Phys. 1996, 35, L74–L76. [Google Scholar] [CrossRef]
- Zhang, M.; Bhattacharya, P.; Guo, W. InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop. Appl. Phys. Lett. 2010, 97, 011103. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Zhang, M.; Hinchley, J. Tunnel injection In0.25Ga0.75N/GaN quantum dot light-emitting diodes. Appl. Phys. Lett. 2010, 97, 251107. [Google Scholar] [CrossRef]
- Arif, R.A.; Ee, Y.K.; Tansu, N. Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes. Appl. Phys. Lett. 2007, 91, 091110. [Google Scholar] [CrossRef]
- Tan, C.K.; Tansu, N. Electrons and holes get closer. Nat. Nanotechnol. 2015, 10, 107–109. [Google Scholar] [CrossRef] [PubMed]
- DenBaars, S.P.; Feezell, D.; Kelchner, K.; Pimputkar, S.; Pan, C.C.; Yen, C.C.; Tanaka, S.; Zhao, Y.; Pfaff, N.; Farrell, R.; et al. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Mater. 2013, 61, 945–951. [Google Scholar] [CrossRef]
- Tansu, N.; Zhao, H.; Liu, G.; Li, X.H.; Zhang, J.; Tong, H.; Ee, Y.K. III-Nitride Photonics. IEEE Photonics J. 2010, 2, 241–248. [Google Scholar] [CrossRef]
- Crawford, M.H. LEDs for Solid-State Lighting: Performance Challenges and Recent Advances. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1028–1040. [Google Scholar] [CrossRef]
- Tan, C.K.; Tansu, N. Auger recombination rates in dilute-As GaNAs semiconductor. AIP Adv. 2015, 5, 057135. [Google Scholar] [CrossRef]
- Delaney, K.T.; Rinke, P.; Van de Walle, C.G. Auger recombination rates in nitrides from first principles. Appl. Phys. Lett. 2009, 94, 191109. [Google Scholar] [CrossRef]
- Iveland, J.; Martinelli, L.; Peretti, J.; Speck, J.S.; Weisbuch, C. Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection: Identification of the Dominant Mechanism for Efficiency Droop. Phys. Rev. Lett. 2013, 110, 177406. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.K.; Zhang, J.; Li, X.H.; Liu, G.; Tayo, B.O.; Tansu, N. First-Principle Electronic Properties of Dilute-As GaNAs Alloy for Visible Light Emitters. J. Disp. Technol. 2013, 9, 272–279. [Google Scholar] [CrossRef]
- Mukai, T.; Yamada, M.; Nakamura, S. Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes. Jpn. J. Appl. Phys. 1999, 38, 3976–3981. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, X.A.; Yan, C. Investigation of the Nonthermal Mechanism of Efficiency Rolloff in InGaN Light-Emitting Diodes. IEEE Trans. Electron Devices 2008, 55, 1771–1775. [Google Scholar] [CrossRef]
- Kim, M.H.; Schubert, M.F.; Dai, Q.; Kim, J.K.; Schubert, E.F. Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 2007, 91, 183507. [Google Scholar] [CrossRef]
- Vampola, K.J.; Iza, M.; Keller, S.; DenBaars, S.P.; Nakamura, S. Measurement of electron overflow in 450 nm InGaN light-emitting diode structures. Appl. Phys. Lett. 2009, 94, 061116. [Google Scholar] [CrossRef]
- Wang, T.H.; Xu, J.L.; Wang, X.D. The effect of multi-quantum barrier structure on light-emitting diodes performance by a non-isothermal model. Chin Sci. Bull. 2011, 56, 2210–2214. [Google Scholar] [CrossRef]
- Xia, C.S.; Li, Z.M.; Li, Z.Q.; Sheng, Y. Effect of multiquantum barriers in performance enhancement of GaN-based light-emitting diodes. Appl. Phys. Lett. 2013, 102, 013507. [Google Scholar]
- Piprek, J.; Li, Z.M. Origin of InGaN light-emitting diode efficiency improvements using chirped AlGaN multi-quantum barriers. Appl. Phys. Lett. 2013, 102, 023510. [Google Scholar] [CrossRef]
- Chang, C.S.; Su, Y.K.; Chang, S.J.; Chang, P.T.; Wu, Y.R.; Huang, K.H.; Chen, T.P. High-Brightness AlGaInP 573-nm Light-Emitting Diode with A Chirped Multiquantum Barrier. IEEE J. Sel. Top. Quantum Electron. 1998, 3, 77–83. [Google Scholar] [CrossRef]
- Irikawa, M.; Ishikawa, T.; Sasaki, Y.; Iwasawa, K.; Suemune, I.; Iga, K. Some effects of conduction band nonparabolicity on electron reflection spectrum of multiquantum barriers. J. Appl. Phys. 1998, 84, 4667–4672. [Google Scholar] [CrossRef]
- Zhang, J.; Tansu, N. Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes. J. Appl. Phys. 2011, 110, 113110. [Google Scholar] [CrossRef]
- Eliseev, P.G.; Perlin, P.; Lee, J.; Osiński, M. “Blue” temperature-induced shift and band-tail emission in InGaN-based light sources. Appl. Phys. Lett. 1997, 71, 569–571. [Google Scholar] [CrossRef]
- Eliseev, P.G. The red σ2/kT spectral shift in partially disordered semiconductors. J. Appl. Phys. 2003, 93, 5404–5415. [Google Scholar] [CrossRef]
- Li, Q.; Xu, S.J.; Xie, M.H.; Tong, S.Y. A model for steady-state luminescence of localized-state ensemble. Europhys. Lett. 2005, 71, 994–1000. [Google Scholar] [CrossRef]
- Wu, Y.F.; Lee, J.C.; Nee, T.E.; Wang, J.C. Carrier localization effect on luminescence spectra of III–V heterostructures. J. Lumin. 2011, 131, 1267–1271. [Google Scholar] [CrossRef]
- Rao, M.; Kim, D.; Mahajan, S. Compositional dependence of phase separation in InGaN layers. Appl. Phys. Lett. 2004, 85, 1961–1963. [Google Scholar] [CrossRef]
- Galtrey, M.J.; Oliver, R.A.; Kappers, M.J.; Humphreys, C.J.; Clifton, P.H.; Larson, D.; Saxey, D.W.; Cerezo, A. Three-dimensional atom probe analysis of green- and blue-emitting InxGa1−xN/GaNInxGa1−xN/GaN multiple quantum well structures. J. Appl. Phys. 2008, 104, 013524. [Google Scholar] [CrossRef]
- Lee, J.C.; Wu, Y.F.; Nee, T.E.; Wang, J.C. Characterization of Nanocrystallites of InGaN/GaN Multiquantum Wells by High-Resolution X-ray Diffraction. IEEE. Trans. Nanotechnol. 2011, 10, 827–831. [Google Scholar] [CrossRef]
- Wu, Y.F.; Hsu, H.P.; Chen, H.I. Characterization of the structural and optical properties of CuIn1−xGaxSe2 thin films by X-ray diffraction. J. Lumin. 2013, 142, 81–85. [Google Scholar] [CrossRef]
- Yang, T.J.; Shivaraman, R.; Speck, J.S.; Wu, Y.R. The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior. J. Appl. Phys. 2014, 116, 113104. [Google Scholar] [CrossRef]
- Xu, J.; Schubert, M.F.; Noemaun, A.N.; Zhu, D.; Kim, J.K.; Schubert, E.F.; Kim, M.H.; Chung, H.J.; Yoon, S.; Sone, C.; et al. Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes. Appl. Phys. Lett. 2009, 94, 011113. [Google Scholar] [CrossRef]
- Yuki, A.; Watanabe, H.; Che, S.B.; Ishitani, Y.; Yoshikawa, A. 1–2 ML thick InN-based quantum wells with InGaN barriers for blue-green light emitters. Phys. Status Solidi C 2009, 6, S417–S420. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.-F.; Lee, J.-C. Performance of Nanostructures within InGaN-Based Multiquantum-Well Light-Emitting Devices. Appl. Sci. 2017, 7, 380. https://doi.org/10.3390/app7040380
Wu Y-F, Lee J-C. Performance of Nanostructures within InGaN-Based Multiquantum-Well Light-Emitting Devices. Applied Sciences. 2017; 7(4):380. https://doi.org/10.3390/app7040380
Chicago/Turabian StyleWu, Ya-Fen, and Jiunn-Chyi Lee. 2017. "Performance of Nanostructures within InGaN-Based Multiquantum-Well Light-Emitting Devices" Applied Sciences 7, no. 4: 380. https://doi.org/10.3390/app7040380
APA StyleWu, Y. -F., & Lee, J. -C. (2017). Performance of Nanostructures within InGaN-Based Multiquantum-Well Light-Emitting Devices. Applied Sciences, 7(4), 380. https://doi.org/10.3390/app7040380