Effect of Plasma Exposure Time on the Polyphenolic Profile and Antioxidant Activity of Fresh-Cut Apples
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material Handling and Storage
2.2. DBD Gas Plasma Generator and Treatments
2.3. Sample Preparation and Plasma Treatments
2.4. Physico-Chemical Parameters
2.5. Polyphenolic Content by HPLC
- Polyphenolic extract preparation
- High-performance liquid chromatography and mass spectrometry analysis
2.6. In Vitro Antioxidant Activity and Total Phenolics Index
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Parameters
3.2. Phenolic Content
3.3. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weltmann, K.D.; Kindel, E.; von Woedtke, T.; Hähnel, M.; Stieber, M.; Brandenburg, R. Atmospheric-pressure plasma sources: Prospective tools for plasma medicine. Pure Appl. Chem. 2010, 82, 1223–1237. [Google Scholar] [CrossRef] [Green Version]
- Fridman, G.; Friedman, G.; Gutsol, A.; Shekhter, A.B.; Vasilets, V.N.; Fridman, A. Applied plasma medicine. Plasma Process. Polym. 2008, 5, 503–533. [Google Scholar] [CrossRef]
- Guo, J.; Huang, K.; Wang, J. Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: A review. Food Control 2015, 5, 482–490. [Google Scholar] [CrossRef]
- Misra, N.N.; Tiwari, B.K.; Raghavarao, K.S.M.S.; Cullen, P.J. Nonthermal plasma inactivation of food-borne pathogens. Food Eng. Rev. 2011, 3, 159–170. [Google Scholar] [CrossRef]
- Hojnik, N.; Cvelbar, U.; Tavčar-Kalcher, G.; Walsh, J.L.; Križaj, I. Mycotoxin decontamination of food: Cold atmospheric pressure plasma versus “classic” decontamination. Toxins 2017, 9, 151. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, A.; Niemira, B.A.; Gurtler, J.B.; Sites, J.; Boyd, G.; Kingsley, D.H.; Li, X.; Chen, H. Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma. Food Microbiol. 2017, 63, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Keener, K.M.; Misra, N.N. Future of cold plasma in food processing. In Cold Plasma in Food and Agriculture; Elsevier: Amsterdam, The Netherlands, 2016; pp. 343–360. ISBN 978-0-12-801365-6. [Google Scholar]
- Misra, N.N.; Pankaj, S.K.; Segat, A.; Ishikawa, K. Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci. Technol. 2016, 55, 39–47. [Google Scholar] [CrossRef]
- Grzegorzewski, F.; Rohn, S.; Kroh, L.W.; Geyer, M.; Schlüter, O. Surface morphology and chemical composition of lamb’s lettuce (Valerianella locusta) after exposure to a low-pressure oxygen plasma. Food Chem. 2010, 122, 1145–1152. [Google Scholar] [CrossRef]
- Grzegorzewski, F.; Ehlbeck, J.; Schlüter, O.; Kroh, L.W.; Rohn, S. Treating lamb’s lettuce with a cold plasma–Influence of atmospheric pressure Ar plasma immanent species on the phenolic profile of Valerianella locusta. LWT–Food Sci. Technol. 2011, 44, 2285–2289. [Google Scholar] [CrossRef]
- Ramazzina, I.; Tappi, S.; Rocculi, P.; Sacchetti, G.; Berardinelli, A.; Marseglia, A.; Rizzi, F. Effect of cold plasma treatment on the functional properties of fresh-cut apples. J. Agric. Food Chem. 2016, 64, 8010–8018. [Google Scholar] [CrossRef] [PubMed]
- Ramazzina, I.; Berardinelli, A.; Rizzi, F.; Tappi, S.; Ragni, L.; Sacchetti, G.; Rocculi, P. Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biol. Technol. 2015, 107, 55–65. [Google Scholar] [CrossRef]
- Wang, R.X.; Nian, W.F.; Wu, H.Y.; Feng, H.Q.; Zhang, K.; Zhang, J.; Zhu, W.D.; Becker, K.H.; Fang, J. Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: Inactivation and physiochemical. Eur. Phys. J. D 2012, 66, 276. [Google Scholar] [CrossRef]
- Kovačević, D.B.; Putnik, P.; Dragović-Uzelac, V.; Pedisić, S.; Režek Jambrak, A.; Herceg, Z. Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chem. 2016, 190, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Kovačević, D.B.; Kljusurić, J.G.; Putnik, P.; Vukušić, T.; Herceg, Z.; Dragović-Uzelac, V. Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chem. 2016, 212, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Garofuli, I.E.; Jambrak, A.R.; Milošević, S.; Dragović-Uzelac, V.; Zorić, Z.; Herceg, Z. The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (Prunus cerasu s var. Marasca) juice. LWT–Food Sci. Technol. 2015, 62, 894–900. [Google Scholar] [CrossRef]
- Bußler, S.; Herppich, W.B.; Neugart, S.; Schreiner, M.; Ehlbeck, J.; Rohn, S.; Schlüter, O. Impact of cold atmospheric pressure plasma on physiology and fl avonol glycoside pro fi le of peas (Pisum sativum ‘Salamanca’). FRIN 2015, 76, 132–141. [Google Scholar] [CrossRef]
- Ragni, L.; Berardinelli, A.; Vannini, L.; Montanari, C.; Sirri, F.; Guerzoni, M.E.; Guarnieri, A. Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. J. Food Eng. 2010, 100, 125–132. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis (OMA) of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2002. [Google Scholar]
- AOAC International. Official Methods of Analysis (OMA) of AOAC International; Method number: 942.15; AOAC International: Gaithersburg, MD, USA, 2000; Available online: http://www.eoma.aoac.org/ (accessed on 18 July 2017).
- Sweeney, J.P.; Chapman, V.J.; Hepner, P.A. Sugar, acid, and flavor in fresh fruits. J. Am. Diet. Assoc. 1970, 57, 432–435. [Google Scholar] [PubMed]
- Gurol, C.; Ekinci, F.Y.; Aslan, N.; Korachi, M. Low temperature plasma for decontamination of E. coli in milk. Int. J. Food Microbiol. 2012, 157, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Satoh, K.; MacGregor, S.J.; Anderson, J.G.; Woolsey, G.A.; Fouracre, R.A. Pulsed-plasma disinfection of water containing Escherichia col. Jpn. J. Appl. Phys. 2007, 46, 1137. [Google Scholar] [CrossRef]
- Kim, H.J.; Yong, H.I.; Park, S.; Choe, W.; Jo, C. Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin. Curr. Appl. Phys. 2013, 13, 1420–1425. [Google Scholar] [CrossRef]
- Tappi, S.; Berardinelli, A.; Ragni, L.; Dalla Rosa, M.; Guarnieri, A.; Rocculi, P. Atmospheric gas plasma treatment of fresh-cut apples. Innov. Food Sci. Emerg. Technol. 2014, 21, 114–122. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Misra, N.N.; Cullen, P.J. Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innov. Food Sci. Emerg. Technol. 2013, 19, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Surowsky, B.; Fischer, A.; Schlueter, O.; Knorr, D. Cold plasma effects on enzyme activity in a model food system. Innov. Food Sci. Emerg. Technol. 2013, 19, 146–152. [Google Scholar] [CrossRef]
- Takai, E.; Kitano, K.; Kuwabara, J.; Shiraki, K. Protein inactivation by low-temperature atmospheric pressure plasma in aqueous solution. Plasma Process. Polym. 2012, 9, 77–82. [Google Scholar] [CrossRef]
- Tappi, S.; Gozzi, G.; Vannini, L.; Berardinelli, A.; Romani, S.; Ragni, L.; Rocculi, P. Cold plasma treatment for fresh-cut melon stabilization. Innov. Food Sci. Emerg. Technol. 2016, 33, 225–233. [Google Scholar] [CrossRef]
- Veberic, R.; Trobec, M.; Herbinger, K.; Hofer, M.; Grill, D.; Stampar, F. Phenolic compounds in some apple (Malus domestica Borkh) cultivars of organic and integrated production. J. Sci. Food Agric. 2005, 85, 1687–1694. [Google Scholar] [CrossRef]
- Nicoli, M.C.; Calligaris, S.; Manzocco, L. Effect of enzymatic and chemical oxidation on the antioxidant capacity of catechin model system and apple derivatives. J. Agric. Food Chem. 2000, 48, 4576–4580. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, S.A.; Adamson, G.E.; Hammerstone, J.F.; Schmitz, H.H. High-performance liquid chromatography/mass spectrometry analysis of proanthocyanidins in foods and beverages. J. Agric. Food Chem. 1999, 47, 3693–3701. [Google Scholar] [CrossRef] [PubMed]
- Landbo, A.K.; Meyer, A.S. Enzyme-assisted extraction of antioxidative phenols from black currant juice press residues (Ribes nigrum). J. Agric. Food Chem. 2002, 49, 3169–3177. [Google Scholar] [CrossRef]
- Sørensen, H.R.; Pedersen, S.; Anders, V.N.; Meyer, A.S. Efficiencies of designed enzyme combinations in releasing arabinose and xylose from wheat arabinoxylan in an industrial ethanol fermentation residue. Enzyme Microb. Technol. 2005, 36, 773–784. [Google Scholar] [CrossRef]
- Pinelo, M.; Zornoza, B.; Meyer, A.S. Selective release of phenols from apple skin: Mass transfer kinetics during solvent and enzyme-assisted extraction. Sep. Purif. Technol. 2008, 63, 620–627. [Google Scholar] [CrossRef]
- Jiménez-Escrig, A. Dietary fiber and its polyhenol cotravelers in healthy eating: Seeking the key component in apple fruit. In Polysaccharides: Natural Fibers in Food and Nutrition; Benkeblia, N., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 31–43. [Google Scholar]
- Zheng, H.Z.; Hwang, I.W.; Chung, S.K. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes. J. Zhejiang Univ. Sci. B 2009, 10, 912–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poncet-Legrand, C.; Cabane, B.; Bautista-Ortín, A.B.; Carrillo, S.; Fulcrand, H.; Pérez, J.; Vernhet, A. Tannin oxidation: Intra- versus intermolecular reactions. Biomacromolecules 2010, 11, 2376–2386. [Google Scholar] [CrossRef] [PubMed]
- Uritani, I.; Asahi, T. Respiration and related metabolic activity in wounded and infected tissues. In Metabolism and Respiration; Davies, D.D., Ed.; Academic Press: London, UK, 1980; pp. 463–486. [Google Scholar]
- Heredia, J.B.; Cisneros-Zevallos, L. The effect of exogenous ethylene and methyl jasmonate on PAL activity; phenolic profiles and antioxidant capacity of carrots (Daucus carota) under different wounding intensities. Postharvest Biol. Technol. 2009, 51, 242–249. [Google Scholar] [CrossRef]
- Lattanzio, V.; Lattanzio, V.M.T.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In Phytochemistry: Advances in Research; Imperato, F., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 31–43. [Google Scholar]
- Pinelo, M.; Arnous, A.; Meyer, A.S. Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci. Technol. 2006, 17, 579–590. [Google Scholar] [CrossRef]
- Rodriguez, O.; Gomes, F.; Rodrigues, S.; Fernandes, F.A.N. Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.). LWT–Food Sci. Technol. 2017, 84, 457–463. [Google Scholar] [CrossRef]
- Reyes, L.F.; Cisneros-Zevallos, L. Wounding stress increases the phenolic content and antioxidant capacity of purple-flesh potatoes (Solanum tuberosum L.). J. Agric. Food Chem. 2003, 5, 5296–5300. [Google Scholar] [CrossRef] [PubMed]
- Reyes, L.F.; Villareal, E.; Cisneros-Zevallos, L. The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chem. 2007, 101, 1254–1262. [Google Scholar] [CrossRef]
- Kang, H.M.; Saltveit, M.E. Antioxidant capacity of lettuce leaf tissue increases after wounding. J. Agric. Food Chem. 2002, 50, 7536–7541. [Google Scholar] [CrossRef] [PubMed]
- Di Mattia, C.; Martuscelli, M.; Sacchetti, G.; Scheirlinck, I.; Beheydt, B.; Mastrocola, D.; Pittia, P. Effect of fermentation and drying on procyanidins; antiradical activity and reducing properties of cocoa beans. Food Bioprocess Technol. 2013, 6, 3420–3432. [Google Scholar] [CrossRef]
- Sacchetti, G.; Cocci, E.; Pinnavaia, G.G.; Mastrocola, D.; Dalla Rosa, M. Influence of processing and storage on the antioxidant activity of apple derivatives. Int. J. Food Sci. Technol. 2008, 43, 797–804. [Google Scholar] [CrossRef]
Time (min) | ||||
---|---|---|---|---|
0 | 10 | 20 | 30 | |
Water content (%) | 83.73a | 83.53a | 84.84a | 83.63a |
MI (SSC/TA) | 34.88a | 33.08a | 37.68a | 34.54a |
pH | 3.73a | 3.64b | 3.56b | 3.65b |
L* (4 h) | 77.89a | 76.93a | 76.87a | 79.48b |
a* (4 h) | 0.59a | 0.08a | −0.56a | −2.49b |
b* (4 h) | 26.75a | 27.03a | 27.16a | 24.54b |
Compound | Time (min) | |||||
---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 120 | ||
Flavan-3-ols | Catechin | 46.6ab | 40.5bc | 48.8a | 36.9c | 26.8d |
Epicatechin | 365a | 353ab | 398a | 303b | 229c | |
Procyanidin dimer B1 | 40.1a | 37.8a | 39.0a | 31.2b | 17.8c | |
Procyanidin dimer B2 | 138a | 135ab | 141a | 113b | 70.9c | |
Procyanidin dimer B4 | 9.61a | 9.86a | 9.40ab | 7.63b | 4.63c | |
Procyanidin B trimer | 8.62a | 8.14a | 7.81a | 6.57b | 3.53c | |
Procyanidin B trimer 2 | 15.3a | 14.8a | 14.4a | 11.4b | 7.01c | |
Procyanidin B trimer 3 | 49.6a | 49.0a | 46.3a | 37.0b | 20.3c | |
Procyanidin B trimer 4 | 7.00a | 7.30a | 6.50ab | 5.40b | 2.68c | |
Procyanidin B trimer 5 | 0.39b | 15.05a | 13.52b | 0.14b | 0.05b | |
Hydroxycinnamic acids | Caffeic acid | 0.96a | 0.55b | 1.13a | 0.98a | 1.02a |
Caffeoylquinic acid isomer 1 | 292b | 384a | 291b | 263bc | 238c | |
Caffeoylquinic acid isomer 2 | 613bc | 832a | 685b | 620bc | 591c | |
4-Coumaroyl quinic acid | 91.9a | 99.2a | 97.7a | 77.9b | 80.8b | |
Coumaroyl quinic acid | 247b | 302a | 268ab | 257a | 283ab | |
Dihydrochalcones | Phloretin-2′-O-(2′′-O-xylosyl) glucoside | 145b | 196a | 187a | 197a | 139b |
Phloridzin | 35.7c | 49.9bc | 54.5b | 81.2a | 25.8c | |
Flavonols | Myricetin rhamnoside | 2.89bc | 4.95a | 3.64b | 2.94bc | 2.30c |
Quercetin | 2.77bc | 4.22a | 3.49ab | 3.55a | 2.33c | |
Quercetin-O-glucoside | 2.90b | 6.22a | 3.70b | 2.97b | 2.28b | |
Quercetin-O-rhamnoside | 27.0b | 37.2a | 32.8ab | 33.2a | 24.2b | |
Rutin | 0.13a | 0.06ab | 0.14a | 0.05b | 0.00c | |
Total phenolics | 2142b | 2588a | 2352ab | 2092b | 1774c |
Extract | Time (min) | |||||
---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 120 | ||
TPI * | amphiphilic | 12,633b | 13,702a | 12,460b | 11,383c | 8207d |
TPI * | hydrophilic | 855b | 917ab | 981ab | 1050a | 623c |
TPI * | total | 13,484b | 14,622a | 13,357b | 12,242c | 8790d |
ABTS ** | amphiphilic | 14,265b | 15,076a | 14,734ab | 13,526b | 10,098c |
ABTS ** | hydrophilic | 855a | 644b | 840ab | 686b | 803ab |
ABTS ** | total | 15,120ab | 15,720a | 15,574a | 14,212b | 10,900c |
DPPH ** | total | 22,543a | 23,008a | 21,311a | 21,868a | 16,608b |
FRAP *** | total | 26,900b | 30,123a | 27,781b | 25,913b | 17,024c |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tappi, S.; Ramazzina, I.; Rizzi, F.; Sacchetti, G.; Ragni, L.; Rocculi, P. Effect of Plasma Exposure Time on the Polyphenolic Profile and Antioxidant Activity of Fresh-Cut Apples. Appl. Sci. 2018, 8, 1939. https://doi.org/10.3390/app8101939
Tappi S, Ramazzina I, Rizzi F, Sacchetti G, Ragni L, Rocculi P. Effect of Plasma Exposure Time on the Polyphenolic Profile and Antioxidant Activity of Fresh-Cut Apples. Applied Sciences. 2018; 8(10):1939. https://doi.org/10.3390/app8101939
Chicago/Turabian StyleTappi, Silvia, Ileana Ramazzina, Federica Rizzi, Giampiero Sacchetti, Luigi Ragni, and Pietro Rocculi. 2018. "Effect of Plasma Exposure Time on the Polyphenolic Profile and Antioxidant Activity of Fresh-Cut Apples" Applied Sciences 8, no. 10: 1939. https://doi.org/10.3390/app8101939
APA StyleTappi, S., Ramazzina, I., Rizzi, F., Sacchetti, G., Ragni, L., & Rocculi, P. (2018). Effect of Plasma Exposure Time on the Polyphenolic Profile and Antioxidant Activity of Fresh-Cut Apples. Applied Sciences, 8(10), 1939. https://doi.org/10.3390/app8101939