Self-Consistent Derivation of the Modified Gross–Pitaevskii Equation with Lee–Huang–Yang Correction
Abstract
:1. Introduction
2. Quantum Field Theory of Bosons
3. Bogoliubov Prescription and Quantum Fluctuations
4. Bogoliubov–de Gennes Equations and Their Semiclassical Approximation
5. Local Quantum Depletion and Generalized Gross–Pitaevskii Equation
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Bose, S.N. Plancks Gesetz und Lichtquantenhypothese. Z. Phys. 1924, 26, 178–181. [Google Scholar] [CrossRef]
- Einstein, A. Quantentheorie des Einatomigen Idealen Gases; Preussische Akademie der Wissenshaften: Berlin, Germany, 1924; Volume 22, p. 261. [Google Scholar]
- London, F. The λ-phenomenon of liquid helium and the Bose–Einstein degeneracy. Nature 1938, 141, 643–644. [Google Scholar] [CrossRef]
- London, F. On the Bose–Einstein Condensation. Phys. Rev. 1938, 54, 947. [Google Scholar] [CrossRef]
- Bogoliubov, N.N. On the theory of superfluidity. J. Phys. 1947, 11, 23–32. [Google Scholar]
- Lee, D.T.; Huang, K.; Yang, C.N. Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties. Phys. Rev. 1957, 106, 1135. [Google Scholar] [CrossRef]
- Gross, E.P. Structure of a quantized vortex in boson systems. Nuovo Cimento 1961, 20, 454–477. [Google Scholar] [CrossRef] [Green Version]
- Pitaevskii, L.P. Vortex Lines in an Imperfect Bose Gas. Sov. Phys. JETP 1961, 13, 451–454. [Google Scholar]
- Leggett, A.J. Bose–Einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys. 2001, 73, 307. [Google Scholar] [CrossRef]
- Papp, S.B.; Pino, J.P.; Wild, R.J.; Ronen, S.; Wieman, C.E.; Jin, D.S.; Cornell, E.A. Bragg Spectroscopy of a Strongly Interacting 85Rb Bose–Einstein Condensate. Phys. Rev. Lett. 2008, 101, 135301. [Google Scholar] [CrossRef] [PubMed]
- Wild, R.J.; Makotyn, P.; Pino, J.M.; Cornell, E.A.; Jin, D.S. Measurements of Tan’s contact in an atomic Bose–Einstein condensate. Phys. Rev. Lett. 2012, 108, 145305. [Google Scholar] [CrossRef] [PubMed]
- Salasnich, L.; Toigo, F. Zero-point energy of ultracold atoms. Phys. Rep. 2016, 640, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Petrov, D.S. Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. Phys. Rev. Lett. 2015, 115, 155302. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, C.R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L. Quantum liquid droplets in a mixture of Bose–Einstein condensates. Science 2018, 359, 6373. [Google Scholar] [CrossRef] [PubMed]
- Semeghini, G.; Ferioli, G.; Masi, L.; Mazzinghi, C.; Wolswijk, L.; Minardi, F.; Modugno, M.; Modugno, G.; Inguscio, M.; Fattori, M. Self-Bound Quantum Droplets of Atomic Mixtures in Free Space. Phys. Rev. Lett. 2018, 120, 235301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabrocini, A.; Polls, A. Beyond the Gross–Pitaevskii approximation: Local density versus correlated basis approach for trapped bosons. Phys. Rev. A 1999, 60, 2319. [Google Scholar] [CrossRef]
- Salasnich, L.; Parola, A.; Reatto, L. Bose condensate in a double-well trap: Ground state and elementary excitations. Phys. Rev. A 1999, 60, 4171. [Google Scholar] [CrossRef]
- Fabrocini, A.; Polls, A. Bose–Einstein condensates in the large-gas-parameter regime. Phys. Rev. A 2001, 64, 063610. [Google Scholar] [CrossRef]
- Adhikari, S.K.; Salasnich, L. Effective nonlinear Schrödinger equations for cigar-shaped and disc-shaped Fermi superfluids at unitarity. New J. Phys. 2009, 11, 023011. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, S.K.; Salasnich, L. Vortex lattice in the crossover of a Bose gas from weak coupling to unitarity. Sci. Rep. 2018, 8, 8825. [Google Scholar] [CrossRef] [PubMed]
- Stoof, H.T.C.; Dickerscheid, D.M.; Gubbels, K. Ultracold Quantum Fields; Springer: Berlin, Germany, 2008. [Google Scholar]
- Griffin, A.; Nikuni, T.; Zaremba, E. Bose-Condensed Gases at Finite Temperatures; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Thermodynamics of a trapped Bose-condensed gas. J. Low Temp. Phys. 1997, 109, 309–355. [Google Scholar] [CrossRef]
- Giorgini, S. Collisionless dynamics of dilute Bose gases: Role of quantum and thermal fluctuations. Phys. Rev. A 2000, 61, 063615. [Google Scholar] [CrossRef]
- Stringari, S. Quantum fluctuations and Gross–Pitaevskii theory. arXiv, 2018; arXiv:1805.11325. [Google Scholar]
- Bach, V.; Breteaux, S.; Chen, T.; Frohlich, J.; Sigal, I.M. The time-dependent Hartree-Fock-Bogoliuvob equations for Bosons. arXiv, 2018; arXiv:1602.05171. [Google Scholar]
- Mazzarella, G.; Moratti, M.; Salasnich, L.; Salerno, M.; Toigo, F. Atomic Josephson junction with two bosonic species. J. Phys. B 2009, 42, 125301. [Google Scholar] [CrossRef] [Green Version]
- Salasnich, L.; Cardoso, W.B.; Malomed, B.A. Localized modes in quasi-two-dimensional Bose–Einstein condensates with spin-orbit and Rabi couplings. Phys. Rev. A 2014, 90, 033629. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salasnich, L. Self-Consistent Derivation of the Modified Gross–Pitaevskii Equation with Lee–Huang–Yang Correction. Appl. Sci. 2018, 8, 1998. https://doi.org/10.3390/app8101998
Salasnich L. Self-Consistent Derivation of the Modified Gross–Pitaevskii Equation with Lee–Huang–Yang Correction. Applied Sciences. 2018; 8(10):1998. https://doi.org/10.3390/app8101998
Chicago/Turabian StyleSalasnich, Luca. 2018. "Self-Consistent Derivation of the Modified Gross–Pitaevskii Equation with Lee–Huang–Yang Correction" Applied Sciences 8, no. 10: 1998. https://doi.org/10.3390/app8101998
APA StyleSalasnich, L. (2018). Self-Consistent Derivation of the Modified Gross–Pitaevskii Equation with Lee–Huang–Yang Correction. Applied Sciences, 8(10), 1998. https://doi.org/10.3390/app8101998