The Quest for Low Loss High Refractive Index Dielectric Materials for UV Photonic Applications
Abstract
:1. Introduction
2. Methods
2.1. Electromagnetic Simulations
2.2. Temperature Calculations
3. Materials
- A real part of the dielectric permittivity ε1 > 4 in the UV allow the generation of electric and magnetic dipolar responses in the nanoparticle. This is necessary to satisfy the zero backward and minimum forward conditions.
- An imaginary part of the dielectric permittivity that meets the condition ε2 < 1 at energies higher than 3 eV. This opens a low-absorption window above 3 eV, since it can be easily derived that, provided that ε1 > ε2, the corresponding imaginary part of the refractive index () would be of the order of 0.1.
4. Results
4.1. Near-Field Enhancement
4.2. Directionality Properties: The Full-Forward Condition
4.3. Interaction Effects
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schuller, J.A.; Barnard, E.S.; Cai, W.; Jun, Y.C.; White, J.S.; Brongersma, M.L. Plasmonics for Extreme Light Concentration and Manipulation. Nat. Mater. 2010, 9, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.N. Nanophotonics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Blaber, M.G.; Arnold, M.D.; Ford, M.J. A Review of the Optical Properties of Alloys and Intermetallics for Plasmonics. J. Phys. Condens. Matter 2010, 22, 143201. [Google Scholar] [CrossRef] [PubMed]
- Lalisse, A.; Tessier, G.; Plain, J.; Baffou, G. Plasmonic Efficiencies of Nanoparticles Made of Metal Nitrides (TiN, ZrN) Compared with Gold. Sci. Rep. 2016, 6, 38647. [Google Scholar] [CrossRef] [PubMed]
- Albella, P.; Alcaraz de la Osa, R.; Moreno, F.; Maier, S.A. Electric and Magnetic Field Enhancement with Ultralow Heat Radiation Dielectric Nanoantennas: Considerations for Surface-Enhanced Spectroscopies. ACS Photonics 2014, 1, 524–529. [Google Scholar] [CrossRef]
- Caldarola, M.; Albella, P.; Cortés, E.; Rahmani, M.; Roschuk, T.; Grinblat, G.; Oulton, R.F.; Bragas, A.V.; Maier, S.A. Non-Plasmonic Nanoantennas for Surface Enhanced Spectroscopies with Ultra-Low Heat Conversion. Nat. Commun. 2015, 6, 7915. [Google Scholar] [CrossRef] [PubMed]
- Forouhi, A.R.; Bloomer, I. Optical Properties of Crystalline Semiconductors and Dielectrics. Phys. Rev. B 1988, 38, 1865–1874. [Google Scholar] [CrossRef]
- Decker, M.; Staude, I. Resonant Dielectric Nanostructures: A Low-Loss Platform for Functional Nanophotonics. J. Opt. (UK) 2016, 18, 1–31. [Google Scholar] [CrossRef]
- García-Etxarri, A.; Gómez-Medina, R.; Froufe-Pérez, L.S.; López, C.; Chantada, L.; Scheffold, F.; Aizpurua, J.; Nieto-Vesperinas, M.; Sáenz, J.J. Strong Magnetic Response of Submicron Silicon Particles in the Infrared. Opt. Express 2011, 19, 4815–4826. [Google Scholar] [CrossRef] [PubMed]
- Geffrin, J.M.; García-Cámara, B.; Gómez-Medina, R.; Albella, P.; Froufe-Pérez, L.S.; Eyraud, C.; Litman, A.; Vaillon, R.; González, F.; Nieto-Vesperinas, M.; et al. Magnetic and Electric Coherence in Forward- and Back-Scattered Electromagnetic Waves by a Single Dielectric Subwavelength Sphere. Nat. Commun. 2012, 3, 1171. [Google Scholar] [CrossRef] [PubMed]
- Staude, I.; Miroshnichenko, A.E.; Decker, M.; Fofang, N.T.; Liu, S.; Gonzales, E.; Dominguez, J.; Luk, T.S.; Neshev, D.N.; Brener, I.; et al. Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks. ACS Nano 2013, 7, 7824–7832. [Google Scholar] [CrossRef] [PubMed]
- Evlyukhin, A.B.; Reinhardt, C.; Seidel, A.; Luk’yanchuk, B.S.; Chichkov, B.N. Optical Response Features of Si-Nanoparticle Arrays. Phys. Rev. B 2010, 82, 045404. [Google Scholar] [CrossRef]
- Zywietz, U.; Schmidt, M.K.; Evlyukhin, A.B.; Reinhardt, C.; Aizpurua, J.; Chichkov, B.N. Electromagnetic Resonances of Silicon Nanoparticle Dimers in the Visible. ACS Photonics 2015, 2, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Person, S.; Jain, M.; Lapin, Z.; Sáenz, J.J.; Wicks, G.; Novotny, L. Demonstration of Zero Optical Backscattering from Single Nanoparticles. Nano Lett. 2013, 13, 1806–1809. [Google Scholar] [CrossRef] [PubMed]
- Ioffe, Z.; Shamai, T.; Ophir, A.; Noy, G.; Yutsis, I.; Kfir, K.; Cheshnovsky, O.; Selzer, Y. Detection of Heating in Current-Carrying Molecular Junctions by Raman Scattering. Nat. Nanotechnol. 2008, 3, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.R.; Corley, D.A.; Tour, J.M.; Natelson, D. Vibrational and Electronic Heating in Nanoscale Junctions. Nat. Nanotechnol. 2011, 6, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Torres-Torres, C. Ablation and Optical Third-Order Nonlinearities in Ag Nanoparticles. Int. J. Nanomed. 2010, 5, 925. [Google Scholar] [CrossRef] [PubMed]
- Plech, A.; Kotaidis, V.; Grésillon, S.; Dahmen, C.; Von Plessen, G. Laser-Induced Heating and Melting of Gold Nanoparticles Studied by Time-Resolved x-Ray Scattering. Phys. Rev. B 2004, 70, 195423. [Google Scholar] [CrossRef]
- King, M.D.; Khadka, S.; Craig, G.A.; Mason, M.D. Effect of Local Heating on the SERS Efficiency of Optically Trapped Prismatic Nanoparticles. J. Phys. Chem. C 2008, 112, 11751–11757. [Google Scholar] [CrossRef]
- Gutiérrez, Y.; Alcaraz, R.; Osa, D.; Ortiz, D.; Saiz, J.M.; González, F.; Moreno, F. Plasmonics in the Ultraviolet with Aluminum, Gallium, Magnesium and Rhodium. Appl. Sci. 2018, 8, 64. [Google Scholar] [CrossRef]
- Sharma, B.; Frontiera, R.R.; Henry, A.-I.; Ringe, E.; Van Duyne, R.P. SERS: Materials, Applications, and the Future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Yang, Y.; Callahan, J.M.; Kim, T.H.; Brown, A.S.; Everitt, H.O. Ultraviolet Nanoplasmonics: A Demonstration of Surface-Enhanced Raman Spectroscopy, Fluorescence, and Photodegradation Using Gallium Nanoparticles. Nano Lett. 2013, 13, 2837–2841. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, A. Plasmonic Tip for Nano Raman Microcopy: Structures, Materials, and Enhancement. Opt. Rev. 2017, 24, 462–469. [Google Scholar] [CrossRef]
- Honda, M.; Kumamoto, Y.; Taguchi, A.; Saito, Y.; Kawata, S. Efficient UV Photocatalysis Assisted by Densely Distributed Aluminum Nanoparticles. J. Phys. D Appl. Phys. 2015, 48, 184006. [Google Scholar] [CrossRef]
- Watson, A.M.; Zhang, X.; Alcaraz de la Osa, R.; Marcos Sanz, J.; González, F.; Moreno, F.; Finkelstein, G.; Liu, J.; Everitt, H.O. Rhodium Nanoparticles for Ultraviolet Plasmonics. Nano Lett. 2015, 15, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, X.; Zhang, D.; Su, N.Q.; Yang, W.; Everitt, H.O.; Liu, J. Product Selectivity in Plasmonic Photocatalysis for Carbon Dioxide Hydrogenation. Nat. Commun. 2017, 8, 14542. [Google Scholar] [CrossRef] [PubMed]
- Shuang, S.; Lv, R.; Xie, Z.; Zhang, Z. Surface Plasmon Enhanced Photocatalysis of Au/Pt-Decorated TiO2 Nanopillar Arrays. Sci. Rep. 2016, 6, 26670. [Google Scholar] [CrossRef] [PubMed]
- Seh, Z.W.; Liu, S.; Zhang, S.-Y.; Shah, K.W.; Han, M.-Y. Synthesis and Multiple Reuse of Eccentric Au@TiO2 Nanostructures as Catalysts. Chem. Commun. 2011, 47, 6689–6691. [Google Scholar] [CrossRef] [PubMed]
- Linic, S.; Christopher, P.; Ingram, D.B. Plasmonic-Metal Nanostructures for Efficient Conversion of Solar to Chemical Energy. Nat. Mater. 2011, 10, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Sanz, J.M.; Ortiz, D.; Alcaraz de la Osa, R.; Saiz, J.M.; González, F.; Brown, A.S.; Losurdo, M.; Everitt, H.O.; Moreno, F. UV Plasmonic Behavior of Various Metal Nanoparticles in the Near- and Far-Field Regimes: Geometry and Substrate Effects. J. Phys. Chem. C 2013, 117, 19606–19615. [Google Scholar] [CrossRef]
- Hou, W.; Cronin, S.B. A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619. [Google Scholar] [CrossRef]
- Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and Catalytic Applications of CeO2 -Based Materials. Chem. Rev. 2016, 116, 5987–6041. [Google Scholar] [CrossRef] [PubMed]
- Held, G. Introduction to Light Emitting Diode Technology and Applications; Auerbach Publications: New York, NY, USA, 2008. [Google Scholar]
- Taniyasu, Y.; Kasu, M.; Makimoto, T. An Aluminium Nitride Light-Emitting Diode with a Wavelength of 210 Nanometres. Nature 2006, 441, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The Properties and Applications of Nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Absorption and Scattering of Light by Small Particles; Bohren, C.F.; Huffman, D.R. (Eds.) Wiley-VCH Verlag GmbH: Weinheim, Germany, 1998. [Google Scholar]
- Mie, G. Beiträge Zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen. Ann. Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- Shibanuma, T.; Albella, P.; Maier, S.A. Unidirectional Light Scattering with High Efficiency at Optical Frequencies Based on Low-Loss Dielectric Nanoantennas. Nanoscale 2016, 8, 14184–14192. [Google Scholar] [CrossRef] [PubMed]
- COMSOL Multiphysics v5.2; COMSOL AB: Stockholm, Sweden, 2016; Available online: www.comsol.com (accessed on 22 October 2018).
- Govorov, A.O.; Richardson, H.H. Generating Heat with Metal Nanoparticles We Describe Recent Studies on Photothermal Effects Using Colloidal. Rev. Lit. Arts Am. 2007, 2, 30–38. [Google Scholar]
- Baffou, G.; Quidant, R. Thermo-Plasmonics: Using Metallic Nanostructures as Nano-Sources of Heat. Laser Photonics Rev. 2013, 7, 171–187. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, W.; Kuang, J.; Jiang, P. Spherical AlN Particles Synthesized by the Carbothermal Method: Effects of Reaction Parameters and Growth Mechanism. Ceram. Int. 2018, 44, 4829–4834. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Tamizhdurai, P.; Sakthinathan, S.; Chen, S.-M.; Shanthi, K.; Sivasanker, S.; Sangeetha, P. Environmentally Friendly Synthesis of CeO2 Nanoparticles for the Catalytic Oxidation of Benzyl Alcohol to Benzaldehyde and Selective Detection of Nitrite. Sci. Rep. 2017, 7, 46372. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.Y.; Kim, T.J.; Jung, Y.W.; Barange, N.S.; Park, H.G.; Kim, J.Y.; Kang, Y.R.; Kim, Y.D.; Shin, S.H.; Song, J.D.; et al. Dielectric Function and Critical Points of AlP Determined by Spectroscopic Ellipsometry. J. Alloys Compd. 2014, 587, 361–364. [Google Scholar] [CrossRef]
- Garriga, M.; Lautenschlager, P.; Cardona, M.; Ploog, K. Optical Properties of AlAs. Solid State Commun. 1987, 61, 157–160. [Google Scholar] [CrossRef]
- Khoshman, J.M.; Kordesch, M.E. Optical Characterization of Sputtered Amorphous Aluminum Nitride Thin Films by Spectroscopic Ellipsometry. J. Non. Cryst. Solids 2005, 351, 3334–3340. [Google Scholar] [CrossRef]
- Shih, W.C.; Chen, C.H.; Chiu, F.C.; Lai, C.M.; Hwang, H.L. CeO2 Optical Properties and Electrical Characteristics. ECS Trans. 2010, 28, 435–442. [Google Scholar]
- Devore, J.R. Refractive Indices of Rutile and Sphalerite. J. Opt. Soc. Am. 1951, 41, 416–419. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: New York, NY, USA, 1998. [Google Scholar]
- Rakovich, A.; Albella, P.; Maier, S.A. Plasmonic Control of Radiative Properties of Semiconductor Quantum Dots Coupled to Plasmonic Ring Cavities. ACS Nano 2015, 9, 2648–2658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, M.W.; King, N.S.; Liu, L.; Everitt, H.O.; Nordlander, P.; Halas, N.J. Aluminum for Plasmonics. ACS Nano 2014, 8, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, Y.; Ortiz, D.; Sanz, J.M.; Saiz, J.M.; Gonzalez, F.; Everitt, H.O.; Moreno, F. How an Oxide Shell Affects the Ultraviolet Plasmonic Behavior of Ga, Mg, and Al Nanostructures. Opt. Express 2016, 24, 20621. [Google Scholar] [CrossRef] [PubMed]
- Barreda, Á.I.; Gutiérrez, Y.; Sanz, J.M.; González, F.; Moreno, F. Light Guiding and Switching Using Eccentric Core-Shell Geometries. Sci. Rep. 2017, 7, 11189. [Google Scholar] [CrossRef] [PubMed]
- Albella, P.; Shibanuma, T.; Maier, S.A. Switchable Directional Scattering of Electromagnetic Radiation with Subwavelength Asymmetric Silicon Dimers. Sci. Rep. 2015, 5, 18322. [Google Scholar] [CrossRef] [PubMed]
- Maksymov, I.S.; Staude, I.; Miroshnichenko, A.E.; Kivshar, Y.S. Optical Yagi-Uda Nanoantennas. Nanophotonics 2012, 1, 65–81. [Google Scholar] [CrossRef]
- Shibanuma, T.; Maier, S.A.; Albella, P. Polarization Control of High Transmission/Reflection Switching by All-Dielectric Metasurfaces. Appl. Phys. Lett. 2018, 112, 063103. [Google Scholar] [CrossRef]
- Rechberger, W.; Hohenau, A.; Leitner, A.; Krenn, J.R.; Lamprecht, B.; Aussenegg, F.R. Optical Properties of Two Interacting Gold Nanoparticles. Opt. Commun. 2003, 220, 137–141. [Google Scholar] [CrossRef]
Material | E (ε2 = 1)/eV |
---|---|
AlP | 3.90 |
AlAs | 3.25 |
AlN | - |
Diamond | - |
CeO2 | 3.53 |
TiO2 | 3.39 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez, Y.; Ortiz, D.; Saiz, J.M.; González, F.; Albella, P.; Moreno, F. The Quest for Low Loss High Refractive Index Dielectric Materials for UV Photonic Applications. Appl. Sci. 2018, 8, 2065. https://doi.org/10.3390/app8112065
Gutiérrez Y, Ortiz D, Saiz JM, González F, Albella P, Moreno F. The Quest for Low Loss High Refractive Index Dielectric Materials for UV Photonic Applications. Applied Sciences. 2018; 8(11):2065. https://doi.org/10.3390/app8112065
Chicago/Turabian StyleGutiérrez, Yael, Dolores Ortiz, José M. Saiz, Francisco González, Pablo Albella, and Fernando Moreno. 2018. "The Quest for Low Loss High Refractive Index Dielectric Materials for UV Photonic Applications" Applied Sciences 8, no. 11: 2065. https://doi.org/10.3390/app8112065
APA StyleGutiérrez, Y., Ortiz, D., Saiz, J. M., González, F., Albella, P., & Moreno, F. (2018). The Quest for Low Loss High Refractive Index Dielectric Materials for UV Photonic Applications. Applied Sciences, 8(11), 2065. https://doi.org/10.3390/app8112065