Impact of a Pilot-Scale Plasma-Assisted Washing Process on the Culturable Microbial Community Dynamics Related to Fresh-Cut Endive Lettuce
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Set-Up
2.2. Experimental Trials
2.3. Total Aerobic Mesophilic Viable Count on Endive Lettuce along the Washing Process Chain
2.4. Culturable Microbial Diversity on Endive Lettuce along the Washing Process Chain
3. Results and Discussion
3.1. Total Aerobic Mesophilic Viable Count of Endive Lettuce along the Washing Process Chain
3.2. Microbial Diversity on Endive Lettuce along the Washing Process Chain
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gil, M.I.; Selma, M.V.; López-Gálvez, F.; Allende, A. Fresh-cut product sanitation and wash water disinfection: Problems and solutions. Int. J. Food Microbiol. 2009, 134, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Allende, A.; Selma, M.V.; López-Gálvez, F.; Villaescusa, R.; Gil, M.I. Role of commercial sanitizers and washing systems on epiphytic microorganisms and sensory quality of fresh-cut escarole and lettuce. Postharvest Biol. Technol. 2008, 49, 155–163. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Gil, M.I.; Allende, A. A novel electrochemical device as a disinfection system to maintain water quality during washing of ready to eat fresh produce. Food Control 2017, 71, 242–247. [Google Scholar] [CrossRef]
- Alexandre, E.C.; Brandão, T.S.; Silva, C.M. Emerging technologies to improve the safety and quality of fruits and vegetables. In Novel Technologies in Food Science; McElhatton, A., do Amaral Sobral, P.J., Eds.; Springer: New York, NY, USA, 2012; Volume 7, pp. 261–297. [Google Scholar]
- Joshi, K.; Mahendran, R.; Alagusundaram, K.; Norton, T.; Tiwari, B.K. Novel disinfectants for fresh produce. Trends Food Sci. Technol. 2013, 34, 54–61. [Google Scholar] [CrossRef]
- Akbas, M.Y.; Olmez, H. Effectiveness of organic acid, ozonated water and chlorine dippings on microbial reduction and storage quality of fresh-cut iceberg lettuce. J. Sci. Food Agric. 2007, 87, 2609–2616. [Google Scholar] [CrossRef] [PubMed]
- Baur, S.; Klaiber, R.; Hammes, W.P.; Carle, R. Sensory and microbiological quality of shredded, packaged iceberg lettuce as affected by pre-washing procedures with chlorinated and ozonated water. Innov. Food Sci. Emerg. Technol. 2004, 5, 45–55. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Rajkovic, A.; Ragaert, P.; Smigic, N.; Devlieghere, F. Chlorine dioxide for minimally processed produce preservation: A review. Trends Food Sci. Technol. 2009, 20, 17–26. [Google Scholar] [CrossRef]
- Gu, G.; Ottesen, A.; Bolten, S.; Ramachandran, P.; Reed, E.; Rideout, S.; Luo, Y.; Patel, J.; Brown, E.; Nou, X. Shifts in spinach microbial communities after chlorine washing and storage at compliant and abusive temperatures. Food Microbiol. 2018, 73, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Siroli, L.; Patrignani, F.; Serrazanetti, D.I.; Vernocchi, P.; Del Chierico, F.; Russo, A.; Torriani, S.; Putignani, L.; Gardini, F.; Lanciotti, R. Effect of thyme essential oil and lactococcus lactis cbm21 on the microbiota composition and quality of minimally processed lamb’s lettuce. Food Microbiol. 2017, 68, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Ziuzina, D.; Misra, N.N. Chapter 9—cold plasma for food safety. In Cold Plasma in Food and Agriculture; Misra, N.N., Schlüter, O., Cullen, P.J., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 223–252. [Google Scholar]
- Thirumdas, R.; Kothakota, A.; Annapure, U.; Siliveru, K.; Blundell, R.; Gatt, R.; Valdramidis, V.P. Plasma activated water (paw): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci. Technol. 2018, 77, 21–31. [Google Scholar] [CrossRef]
- Ma, R.; Wang, G.; Tian, Y.; Wang, K.; Zhang, J.; Fang, J. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J. Hazard. Mater. 2015, 300, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Judée, F.; Simon, S.; Bailly, C.; Dufour, T. Plasma-activation of tap water using dbd for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms. Water Res. 2018, 133, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Niquet, R.; Boehm, D.; Schnabel, U.; Cullen, P.; Bourke, P.; Ehlbeck, J. Characterising the impact of post-treatment storage on chemistry and antimicrobial properties of plasma treated water derived from microwave and dbd sources. Plasma Process. Polym. 2018, 15, 1700127. [Google Scholar] [CrossRef]
- Xu, Y.; Tian, Y.; Ma, R.; Liu, Q.; Zhang, J. Effect of plasma activated water on the postharvest quality of button mushrooms, agaricus bisporus. Food Chem. 2016, 197, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Goodburn, C.; Wallace, C.A. The microbiological efficacy of decontamination methodologies for fresh produce: A review. Food Control 2013, 32, 418–427. [Google Scholar] [CrossRef]
- Andrasch, M.; Stachowiak, J.; Schlüter, O.; Schnabel, U.; Ehlbeck, J. Scale-up to pilot plant dimensions of plasma processed water generation for fresh-cut lettuce treatment. Food Packag. Shelf Life 2017, 14, 40–45. [Google Scholar] [CrossRef]
- Schnabel, U.; Andrasch, M.; Stachowiak, J.; Weit, C.; Weihe, T.; Schmidt, C.; Muranyi, P.; Schlüter, O.; Ehlbeck, J. Sanitation of fresh-cut endive lettuce by plasma processed tap water (pptw)—Up-scaling to industrial level. Innov. Food Sci. Emerg. Technol. 2018, in press. [Google Scholar] [CrossRef]
- International Organization for Standardization. International Standard ISO 4833-2:2013: Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 2: Colony Count at 30 °C by the Surface Plating Technique; Beuth Verlag GmbH: Berlin, Germany, 2013. [Google Scholar]
- Palma-Salgado, S.; Pearlstein, A.J.; Luo, Y.; Park, H.K.; Feng, H. Whole-head washing, prior to cutting, provides sanitization advantages for fresh-cut iceberg lettuce (Latuca sativa L.). Int. J. Food Microbiol. 2014, 179, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Yeoh, W.K.; Forney, C.; Siddiqui, M.W. Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2017, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Van Haute, S.; Tryland, I.; Veys, A.; Sampers, I. Wash water disinfection of a full-scale leafy vegetables washing process with hydrogen peroxide and the use of a commercial metal ion mixture to improve disinfection efficiency. Food Control 2015, 50, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Osaili, T.M.; Alaboudi, A.R.; Al-Quran, H.N.; Al-Nabulsi, A.A. Decontamination and survival of enterobacteriaceae on shredded iceberg lettuce during storage. Food Microbiol. 2018, 73, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Alfonzo, A.; Gaglio, R.; Miceli, A.; Francesca, N.; Di Gerlando, R.; Moschetti, G.; Settanni, L. Shelf life evaluation of fresh-cut red chicory subjected to different minimal processes. Food Microbiol. 2018, 73, 298–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva Felício, M.T.; Hald, T.; Liebana, E.; Allende, A.; Hugas, M.; Nguyen-The, C.; Johannessen, G.S.; Niskanen, T.; Uyttendaele, M.; McLauchlin, J. Risk ranking of pathogens in ready-to-eat unprocessed foods of non-animal origin (Fonao) in the EU: Initial evaluation using outbreak data (2007–2011). Int. J. Food Microbiol. 2015, 195, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welker, M.; Moore, E.R.B. Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst. Appl. Microbiol. 2011, 34, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Rahi, P.; Prakash, O.; Shouche, Y.S. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (maldi-tof ms) based microbial identifications: Challenges and scopes for microbial ecologists. Front. Microbiol. 2016, 7, 1359. [Google Scholar] [CrossRef] [PubMed]
- Hausdorf, L.; Mundt, K.; Winzer, M.; Cordes, C.; Fröhling, A.; Schlüter, O.; Klocke, M. Characterization of the cultivable microbial community in a spinach-processing plant using maldi-tof ms. Food Microbiol. 2013, 34, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, M.; Huber, I.; Konrad, R.; Busch, U. Application of maldi-tof ms for the identification of food borne bacteria. Open Microbiol. J. 2013, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Cobo Molinos, A.; Abriouel, H.; Ben Omar, N.; López, R.L.; Gálvez, A. Microbial diversity changes in soybean sprouts treated with enterocin as-48. Food Microbiol. 2009, 26, 922–926. [Google Scholar] [CrossRef] [PubMed]
- Castro-Ibáñez, I.; Gil, M.I.; Allende, A. Ready-to-eat vegetables: Current problems and potential solutions to reduce microbial risk in the production chain. LWT Food Sci. Technol. 2017, 85, 284–292. [Google Scholar] [CrossRef]
- Abadias, M.; Usall, J.; Anguera, M.; Solsona, C.; Vinas, I. Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. Int. J. Food Microbiol. 2008, 123, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Söderqvist, K.; Ahmed Osman, O.; Wolff, C.; Bertilsson, S.; Vågsholm, I.; Boqvist, S. Emerging microbiota during cold storage and temperature abuse of ready-to-eat salad. Infect. Ecol. Epidemiol. 2017, 7, 1328963. [Google Scholar] [CrossRef] [PubMed]
[A] Washing with Water and Pre-Bath (180 s) (cfu/g) | [B] Washing with PTW in Pre-Rinsing (10 s) (cfu/g) | [C] Washing with PTW in Pre-Rinsing (30 s) (cfu/g) | [D] Washing with PTW in Pre-Bath (180 s) (cfu/g) | [E] Washing with PTW in Second Wash (180 s) (cfu/g) | [F] Washing with PTW in Pre-Bath (180 s) in Pre-Rinsing (30 s) and in Second Wash (180 s) (cfu/g) | |
---|---|---|---|---|---|---|
[1] Endive raw material | 7.70 a ± 0.12 | 7.54 a ± 0.18 | 7.53 a ± 0.21 | 7.60 a ± 0.15 | 7.58 a ± 0.09 | 7.74 a ± 0.13 |
[2] Endive after pre-bath | 6.77 b ± 0.09 | n.d. | n.d. | 5.85 b,d,e ± 0.19 | n.d. | 6.85 b,e ± 0.05 |
[3] Endive after pre-rinsing | 7.22 c ± 0.10 | 6.19 b ± 0.28 | 5.16 b ± 0.23 | 5.99 b,c ± 0.13 | 7.07 b ± 0.16 | 7.18 b,e ± 0.04 |
[4] Endive after first wash | 7.40 d ± 0.12 | n.d. | n.d. | 6.34 c ± 0.35 | 7.06 b ± 0.08 | 7.18 c ± 0.04 |
[5] Endive after second wash | 6.82 b ± 0.10 | n.d. | n.d. | 5.54 d ± 0.29 | 5.43 c ± 0.12 | 5.43 d 0.03 |
[6] Endive after final rinsing | 6.52 e ± 0.16 | 6.90 c ± 0.12 | 6.49 c ± 0.36 | 6.00 c,e ± 0.31 | 6.57 d ± 0.09 | 6.64 e ± 0.50 |
[A] Washing with Water and Pre-Bath (180 s) (cfu/g) | [B] Washing with PTW in Pre-Rinsing (10 s) (cfu/g) | [C] Washing with PTW in Pre-Rinsing (30 s) (cfu/g) | [D] Washing with PTW in Pre-Bath (180 s) (cfu/g) | [E] Washing with PTW in Second Wash (180 s) (cfu/g) | [F] Washing with PTW in Pre-Bath (180 s) in Pre-Rinsing (30 s) and in Second Wash (180 s) (cfu/g) | |
---|---|---|---|---|---|---|
[1] Endive raw material | 8.26 a ± 0.16 | 7.39 a ± 0.36 | 7.83 a ± 0.16 | 7.76 a ± 0.15 | 7.76 a ± 0.19 | 8.11 a ± 0.16 |
[2] Endive after pre-bath | 7.91 b ± 0.26 | n.d. | n.d. | 6.95 b,c ± 0.41 | n.d. | 7.48 b ± 0.23 |
[3] Endive after pre-rinsing | 7.63 b,c ± 0.23 | 6.94 b ± 0.16 | 5.97 b ± 0.62 | 6.99 b ± 0.42 | 7.59 a ± 0.15 | 7.13 c± 0.24 |
[4] Endive after first wash | 7.57 c ± 0.22 | n.d. | n.d. | 7.27 b,d ± 0.23 | 7.66 b ± 0.36 | 7.19 c,d ± 0.07 |
[5] Endive after second wash | 7.51 c ± 0. 07 | n.d. | n.d. | 6.98 c ± 0.14 | n.d. | 6.16 e 0.39 |
[6] Endive after final rinsing | 7.47 c ± 0.14 | 6.94 b ± 0.18 | 7.49 a ± 0.34 | 7.48 d± 0.14 | 7.48 a ± 0.27 | 7.16 b,c ± 0.37 |
After Processing log N/N0 | After Storage log N/N0 | |
---|---|---|
[A] Washing with water and pre-bath (180 s) | −1.18 a,c,d ± 0.21 | −0.80 a,c ± 0.20 |
[B] Washing with PTW in pre-rinsing (10 s) | −0.64 b ± 0.16 | −0.44 a,b,c ± 0.54 |
[C] Washing with PTW in pre-rinsing (30 s) | −1.04 b,c,d ± 0.52 | −0.34 b ± 0.27 |
[D] Washing with PTW in pre wash bath (180 s) | −1.60 c ± 0.45 | −0.29 b ± 0.25 |
[E] Washing with PTW in second wash (180 s) | −1.01 d ± 0.09 | −0.27 b ± 0.41 |
[F] Washing with PTW in pre-bath (180 s) in pre-rinsing (30 s) and in second wash (180 s)) | −1.10 a,c,d ± 0.46 | −0.95c ± 0.51 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fröhling, A.; Ehlbeck, J.; Schlüter, O. Impact of a Pilot-Scale Plasma-Assisted Washing Process on the Culturable Microbial Community Dynamics Related to Fresh-Cut Endive Lettuce. Appl. Sci. 2018, 8, 2225. https://doi.org/10.3390/app8112225
Fröhling A, Ehlbeck J, Schlüter O. Impact of a Pilot-Scale Plasma-Assisted Washing Process on the Culturable Microbial Community Dynamics Related to Fresh-Cut Endive Lettuce. Applied Sciences. 2018; 8(11):2225. https://doi.org/10.3390/app8112225
Chicago/Turabian StyleFröhling, Antje, Jörg Ehlbeck, and Oliver Schlüter. 2018. "Impact of a Pilot-Scale Plasma-Assisted Washing Process on the Culturable Microbial Community Dynamics Related to Fresh-Cut Endive Lettuce" Applied Sciences 8, no. 11: 2225. https://doi.org/10.3390/app8112225
APA StyleFröhling, A., Ehlbeck, J., & Schlüter, O. (2018). Impact of a Pilot-Scale Plasma-Assisted Washing Process on the Culturable Microbial Community Dynamics Related to Fresh-Cut Endive Lettuce. Applied Sciences, 8(11), 2225. https://doi.org/10.3390/app8112225