A Review on Nanoparticles as Boon for Biogas Producers—Nano Fuels and Biosensing Monitoring
Abstract
:1. Introduction
2. Application of Biosensors in Biogas Monitoring
Determination of Different Products in AD
3. Metallic Nanoparticles Used for the Enhancement of Bio Gas Production
3.1. Nanoparticles
3.2. Concentration of Nanoparticles
4. An Understanding of Biomass and Their Characteristics
Interaction of Nanoparticles with Biomass
5. Nanoparticles with Microorganisms
5.1. Algal Biomass and Nanoparticles
5.2. NPs Impact on Macro algae/Aquatic Plants
6. Modified NPs, Particle Size and Their Effect
7. Phytotoxicity/Ecotoxicity Effect of NPs
8. Mechanism of Microbial Activity
9. Efficacy and Impact of Nanomaterials on Biomass
10. Recommendations and Conclusions
11. Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maity, S.K. Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renew. Sustain. Energy Rev. 2015, 43, 1427–1445. [Google Scholar] [CrossRef] [Green Version]
- Nigam, P.S.; Singh, A. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- Hussein, A.K. Applications of nanotechnology in renewable energies—A comprehensive overview and understanding. Renew. Sust. Energ. Rev. 2015, 42, 460–476. [Google Scholar] [CrossRef]
- Lund, H. Renewable energy strategies for sustainable development. Energy 2007, 32, 912–919. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, N.; Rawat, R.; Sharma, R.; Oberoi, H.S.; Srivastava, M.; Singh, J. Effect of nickel- cobaltite nanoparticles on production and thermostability of cellulases from newly isolated thermotolraent Eurotiyomycetessp. NS Appl. Biochem. Biotechnol. 2014, 174, 1092–1103. [Google Scholar] [CrossRef] [PubMed]
- Bazmi, A.A.; Zahedi, G. Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review. Renew. Sustain. Energy Rev. 2011, 15, 3480–3500. [Google Scholar] [CrossRef]
- Bidart, C.; Fröhling, M.; Schultmann, F. Livestock manure and crop residue for energy generation: Macro-assessment at a national scale. Renew. Sustain. Energy Rev. 2014, 38, 537–550. [Google Scholar] [CrossRef]
- Karellas, S.; Boukis, I.; Kontopoulos, G. Development of an investment decision tool for biogas production from agricultural waste. Renew. Sustain. Energy Rev. 2010, 14, 1273–1282. [Google Scholar] [CrossRef]
- Zhang, C.; Su, H.; Baeyens, J.; Tan, T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. [Google Scholar] [CrossRef]
- Al Seadi, T.; Rutz, D.; Prassl, H.; Köttner, M.; Finsterwalder, T.; Volk, S.; Janssen, R. Biogas Handbook; University of Southern Denmark: Esbjerg, Denmark, 2008; pp. 10–42. [Google Scholar]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources; Wiley Online Library: Weinheim, Germany, 2008. [Google Scholar]
- Röhlen, D.L.; Pilas, J.; Dahmen, M.; Keusgen, M.; Selmer, T.; Schöning, M.J. Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes. Front. Chem. 2018, 6, 284. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ellegaard, L. Codigestion of manure and organic wastes in centralized biogasplants: Status and future trends. Appl. Biochem. Biotechnol. 2003, 109, 95–106. [Google Scholar] [CrossRef]
- Komemoto, K.; Lim, Y.G.; Nagao, N.; Onoue, Y.; Niwa, C.; Toda, T. Effect of temperature on VFA’s and biogas production in anaerobic solubilization of food waste. Waste Manag. 2009, 29, 2950–2955. [Google Scholar] [CrossRef] [PubMed]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Andriani, D.; Wresta, A.; Atmaja, T.D.; Saepudin, A. A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl. Biochem. Biotechnol. 2014, 172, 1909–1928. [Google Scholar] [CrossRef]
- Achinas, S.; Achinas, V.; Euverink, G.J.W. A technological overview of biogas production from biowaste. Engineering 2017, 3, 299–307. [Google Scholar] [CrossRef]
- Nielsen, H.; Uellendahl, H.; Ahring, B.K. Regulationandoptimization of the biogas process: Propionate as a key parameter. Biomass Bioenergy 2007, 31, 820–830. [Google Scholar] [CrossRef]
- Boe, K.; Batstone, D.J.; Steyer, J.-P.; Angelidaki, I. State indicators for monitoring the anaerobic digestion process. Water Res. 2010, 44, 5973–5980. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; He, Q.; Wei, Y.; He, Q.; Peng, X. Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste. Bioresour. Technol. 2014, 171, 491–494. [Google Scholar] [CrossRef] [PubMed]
- Montag, D.; Schink, B. Biogas process parameters–energetics and kinetics of secondary fermentations in methanogenic biomass degradation. Appl. Microbiol. Biotechnol. 2016, 100, 1019–1026. [Google Scholar] [CrossRef]
- Diamantis, V.; Melidis, P.; Aivasidis, A. Continuous determination of volatile products in anaerobic fermenters by on-line capillary gas chromatography. Anal. Chim. Acta 2006, 573–574, 189–194. [Google Scholar] [CrossRef]
- Falk, H.M.; Reichling, P.; Andersen, C.; Benz, R. Online monitoring of concentration and dynamics of volatile fatty acids in anaerobic digestion processes with mid-infrared spectroscopy. Bioprocess Biosyst. Eng. 2015, 38, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Stockl, A.; Lichti, F. Near-infrared spectroscopy (NIRS) for a real time monitoring of the biogas process. Bioresour. Technol. 2018, 247, 1249–1252. [Google Scholar] [CrossRef] [PubMed]
- Zumbusch, P.V.; Meyer-Jens, T.; Brunner, G.; Märkl, H. On-line monitoring of organic substances with high-pressure liquid chromatography (HPLC) during the anaerobic fermentation of waste-water. Appl. Microbiol. Biotechnol. 1994, 42, 140–146. [Google Scholar] [CrossRef]
- Schiffels, J.; Baumann, M.E.M.; Selmer, T. Facile analysis of shortchain fatty acids as 4-nitrophenyl esters in complex anaerobic fermentation samples by high performance liquid chromatography. J. Chromatogr. A 2011, 1218, 5848–5851. [Google Scholar] [CrossRef] [PubMed]
- Goriushkina, T.B.; Soldatkin, A.P.; Dzyadevych, S.V. Application of amperometric biosensors for analysis of ethanol, glucose, and lactate in wine. J. Agric. Food Chem. 2009, 57, 6528–6535. [Google Scholar] [CrossRef] [PubMed]
- Rathee, K.; Dhull, V.; Dhull, R.; Singh, S. Biosensors based on electrochemical lactate detection: A comprehensive review. Biochem. Biophys. Rep. 2016, 5, 35–54. [Google Scholar] [CrossRef]
- Pipyn, P.; Verstraete, W. Lactate and ethanol as intermediates in two-phase anaerobic digestion. Biotechnol. Bioeng. 1981, 23, 1145–1154. [Google Scholar] [CrossRef]
- Crable, B.R.; Plugge, C.M.; McInerney, M.J.; Stams, A.J.M. Formate formation and formate conversion in biological fuels production. Enzyme Res. 2011, 2011, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pilas, J.; Yazici, Y.; Selmer, T.; Keusgen, M.; Schöning, M.J. Optimization of an amperometric biosensor array for simultaneous measurement of ethanol, formate, D- and L-lactate. Electrochim. Acta 2017, 251, 256–262. [Google Scholar] [CrossRef]
- Kaur, A.; Kim, J.R.; Michie, I.; Dinsdale, R.M.; Guwy, A.J.; Premier, G.C. Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities. Biosens. Bioelectr. 2013, 47, 50–55. [Google Scholar] [CrossRef]
- Jin, X.; Li, X.; Zhao, N.; Angelidaki, I.; Zhang, Y. Bio-electrolytic sensor for rapid monitoring of volatile fatty acids in anaerobic digestion process. Water Res. 2017, 111, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, J.B.; Murphy, C.D.; McDonnell, K. Development of a bacterial propionate-biosensor for anaerobic digestion monitoring. Enzyme Microb. Technol. 2018, 109, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, F.; Sawaguchi, T.; Yabuki, S.; Iljima, S. Amperometric determination of acetic acid with a trienzyme/poly(dimethylsiloxane)-bilayerbased sensor. Analyt. Chem. 2001, 73, 5738–5742. [Google Scholar] [CrossRef]
- Mieliauskiene, R.; Nistor, M.; Laurinavicius, V.; Csöregi, E. Amperometric determination of acetate with a tri-enzyme based sensor. Sens. Actuat. B Chem. 2006, 113, 671–676. [Google Scholar] [CrossRef]
- Sode, K.; Tsugawa, W.; Aoyagi, M.; Rajashekhara, E.; Watanabe, K. Propionate sensor using coenzyme-A transferase and Acyl-CoA oxidase. Protein Peptide Lett. 2008, 15, 779–781. [Google Scholar] [CrossRef]
- Yang, L.; Xu, F.; Ge, X.; Li, Y. Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew. Sust. Energ. Rev. 2015, 44, 824–834. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.; Quan, X. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment. Waste Manag. 2015, 38, 297–302. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, J.; Hu, Z. Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion. Water Res. 2013, 47, 6790–6800. [Google Scholar] [CrossRef]
- Kharat, M.G.; Murthy, S.; Kamble, S.J. Environmental Applications of Nanotechnology: A Review. ADBU J. Eng. Technol. 2017, 6, 2348–7305. [Google Scholar]
- Bernat, K.; Cydzik-Kwiatkowska, A.; Wojnowska-Baryła, I.; Karczewska, M. Physicochemical properties and biogas productivity of aerobic granular sludge and activated sludge. Biochem. Eng. J. 2017, 117, 43–51. [Google Scholar] [CrossRef]
- Romero-Güiza, M.; Vila, J.; Mata-Alvarez, J.; Chimenos, J.; Astals, S. The role of additives on anaerobic digestion: A review. Renew. Sustain. Eng. Rev. 2016, 58, 1486–1499. [Google Scholar] [CrossRef]
- He, D.-Q.; Luo, H.-W.; Huang, B.-C.; Qian, C.; Yu, H.-Q. Enhanced dewatering of excess activated sludge through decomposing its extracellular polymeric substances by a Fe@ Fe2O3-based composite conditioner. Bioresour. Technol. 2016, 218, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Casals, E.; Barrena, R.; García, A.; González, E.; Delgado, L.; Busquets-Fité, M.; Font, X.; Arbiol, J.; Glatzel, P.; Kvashnina, K.; et al. Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production. Small 2014, 10, 2801–2808. [Google Scholar] [CrossRef]
- ISO/TS 27687. Nanotechnologies Terminology and Definitions for Nanoobjects Nanoparticle, Nanofibre, Nanoplate; ISO (International Organization for Standardization): Geneva, Switzerland, 2008. [Google Scholar]
- Kato, S.; Hashimoto, K.; Watanabe, K. Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals. Environ. Microbiol. 2012, 14, 1646–1654. [Google Scholar] [CrossRef] [PubMed]
- ISO/TS 80004-1. International Standardization Organization Technical Standard: Nanotechnologies Vocabulary Part 1: Core Terms; ISO (International Organization for Standardization): Geneva, Switzerland, 2010. [Google Scholar]
- Mohapatra, M.; Anand, S. Synthesis and applications of nano-structured iron oxides/hydroxides—A review. Int. J. Eng. Sci. Technol. 2010, 2. [Google Scholar] [CrossRef]
- Farré, M.; Sanchís, J.; Barceló, D. Analysis and assessment of the occurrence, the fate and the beha of nanomaterials in the environment. Trend Anal. Chem. 2011, 30, 517–527. [Google Scholar] [CrossRef]
- Stone, V.; Nowack, B.; Baun, A.; van den Brink, N.; von der Kammer, F.; Dusinska, M.; Handy, R.; Hankin, S.; Hassellöv, M.; Joner, E.; et al. Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation. Sci. Total Environ. 2010, 408, 1745–1754. [Google Scholar] [CrossRef]
- US Nanoscale Science. Engineering, and Technology Subcommittee of the Committee on Technology, Environmental, Health, and Safety Research Strategy; National Science and Technology Council: Washington, DC, USA, 2011.
- Nanotechnology Centre for Learning and Teaching. Advancingeconomic Leadership through Integrated STEM Education; Nanotechnology Centre for Learning and Teaching: Evanston, Chicago, IL, USA, 2015. [Google Scholar]
- Duc, N.M. Effects of CeO2 and ZnO Nanoparticles on Anaerobic Digestion and Toxicity of Digested Sludge. Master’s Thesis, Asian Institute of Technology, Khlong Nueng, Thailand, 2013. [Google Scholar]
- Luna-delRisco, M.; Orupõld, K.; Dubourguier, H.-C. Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. J. Hazard. Mater. 2011, 189, 603–608. [Google Scholar] [CrossRef]
- Ram, M.S.; Singh, L.; Suryanarayana, M.V.; Alam, S.I. Effect of iron, nickel and cobalt on bacterial activity and dynamics during anaerobic oxidation of organic matter. Water Air Soil Pollut. 1999, 117, 305–312. [Google Scholar] [CrossRef]
- Abdelsalam, E.; Samer, M.; Attia, Y.A.; Abdel-Hadi, M.A.; Hassan, H.E.; Badr, Y. Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renew. Energy 2016, 87, 592–598. [Google Scholar] [CrossRef]
- Mu, H.; Chen, Y. Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion. Water Res. 2011, 45, 5612–5620. [Google Scholar] [CrossRef] [PubMed]
- Mu, H.; Zheng, X.; Chen, Y.; Chen, H.; Liu, K. Response of anaerobic granular sludge to a shock load of zinc oxide nanoparticles during biological wastewater treatment. Environ. Sci. Technol. 2012, 46, 5997–6003. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, D.; Dai, L.; Chen, Y.; Dai, X. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge. Sci. Rep. 2016, 6, 25857. [Google Scholar] [CrossRef] [Green Version]
- Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H.C.; Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 2008, 71, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Neal, A.L. What can be interfered from bacterium nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology. 2008, 17, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Kasemets, K.; Ivask, A.; Dubourguier, H.C.; Kahru, A. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. InVitro 2009, 23, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Xin, H.; Zhong, D.; Qian, F.; Han, H.; Yuan, Y. Effects of different states of Fe on anaerobic digestion: A review. J. Harbin Inst. Technol. 2015, 22, 69–75. [Google Scholar]
- Liu, Y.; Jia, S.; Wu, Q.; Ran, J.; Zhang, W.; Wu, S. Studies of Fe3O4 chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization. Catal. Commun. 2011, 12, 717–720. [Google Scholar] [CrossRef]
- Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 2009, 48, 3713–3729. [Google Scholar] [CrossRef]
- Vıctor, F.P.; Ferrer, A.S. Enhancement of Biogas Production in Anaerobic Digesters Using Iron Oxide Nanoparticles; Catalan Institute of Nanoscience and Nanotechnology (ICN2), University Autonma Barcelona: Barcelona, Spain, 2011. [Google Scholar]
- Stoimenov, P.K.; Klinger, R.L.; Marchin, G.L.; Klabunde, K.J. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002, 18, 6679–6686. [Google Scholar] [CrossRef]
- Tiwari, D.K.; Behari, J.; Sen, P. Application of nanoparticles in waste water treatment. World Appl. Sci. J. 2008, 3, 417–433. [Google Scholar]
- Qu, X.; Alvarez, P.J.J.; Qilin, L. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946. [Google Scholar] [CrossRef]
- Colvin, V.L. The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 2003, 10, 1166–1170. [Google Scholar] [CrossRef] [PubMed]
- Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 2013, 52, 1636–1653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, K.; De Gusseme, B.; Verstraete, W.; Field, R. The antibacterial and anti-biofouling performance of biogenic silver nanoparticles by Lactobacillus fermentum. Biofouling 2014, 30, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Sweet, M.J.; Chesser, A.; Singleton, I. Review: Metal-based nanoparticles; size, function, and areas for advancement in applied microbiology. Adv. Appl. Microbiol. 2012, 80, 113–142. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Fan, W.; Kishen, A.; Gutmann, J.L.; Fan, B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J. Endod. 2014, 40, 285–290. [Google Scholar] [CrossRef]
- Dash, A.; Singh, A.P.; Chaudhary, B.R.; Singh, S.K.; Dash, D. Effect of silver nanoparticles on growth of eukaryotic green algae. NanoMicro Lett. 2012, 4, 158–165. [Google Scholar] [CrossRef]
- Hao, X.; Wei, J.; Van Loosdrecht, M.C.M.; Cao, D. Analysing the mechanisms of sludge digestion enhanced by iron. Water Res. 2017, 117, 58–67. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Quan, X.; Chen, S. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron. Water Res. 2014, 52, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zheng, S.; Ding, A.; Sun, G.; Yang, M. Performance of a zero valent iron-based anaerobic system in swine wastewater treatment. J. Hazard. Mater. 2015, 286, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Suanon, F.; Sun, Q.; Li, M.; Cai, X.; Zhang, Y.; Yan, Y.; Yu, C.P. Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: Impact on methane yield and pharmaceutical and personal care products degradation. J. Hazard. Mater. 2017, 321, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Huang, X.; Zhang, D.; Lou, Z.; Yuan, H.; Zhu, N. Response of sludge fermentation liquid and microbial community to nano zero-valent iron exposure in a mesophilic anaerobic digestion system. RSC Adv. 2016, 6, 24236–24244. [Google Scholar] [CrossRef]
- Liang, Y.; Li, X.; Zhang, J.; Zhang, L.; Cheng, B. Effect of microscale ZVI/magnetite on methane production and bioavailability of heavy metals during anaerobic digestion of diluted pig manure. Environ. Sci. Pollut. Res. 2017, 24, 12328–12337. [Google Scholar] [CrossRef]
- Abdelsalam, E.; Samer, M.; Attia, Y.A.; Abdel-Hadi, M.A.; Hassan, H.E.; Badr, Y. Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy 2017, 120, 842–853. [Google Scholar] [CrossRef]
- Kong, X.; Yu, S.; Xu, S.; Fang, W.; Liu, J.; Li, H. Effect of Fe° addition on volatile fatty acids evolution on anaerobic digestion at high organic loading rates. Waste Manag. 2018, 71, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Zhen, G.; Lu, X.; Li, Y.; Liu, Y.; Zhao, Y. Influence of zero valent scrap iron (ZVSI) supply on methane production from waste activated sludge. Chem. Eng. J. 2015, 263, 461–470. [Google Scholar] [CrossRef]
- Hu, Y.; Hao, X.; Zhao, D.; Fu, K. Enhancing the CH4yield of anaerobic digestion via endogenous CO2 fixation by exogenous H2. Chemosphere 2015, 140, 34–39. [Google Scholar] [CrossRef]
- Batley, G.E.; Kirby, J.K.; McLaughlin, M.J. Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc. Chem. Res. 2012, 46, 854–864. [Google Scholar] [CrossRef]
- Krysanov, E.Y.; Pavlov, D.S.; Demidova, T.B.; Dgebuadze, Y.Y. Effect of nanoparticles on aquatic organisms. Biol. Bull. 2010, 37, 406–412. [Google Scholar] [CrossRef]
- Hoffmann, C.; Christoffi, N. Testing the toxicity of influents to activated sludge plants with the Vibrio fischeri bioassay utilizing a sludge matrix. Environ. Toxicol. 2001, 16, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Klasen, H.J. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 2000, 26, 117–130. [Google Scholar] [CrossRef]
- Li, W.R.; Xie, X.B.; Shi, Q.S.; Zeng, H.Y.; You-Sheng, O.Y.; Chen, Y.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 2010, 85, 1115–1122. [Google Scholar] [CrossRef]
- Ribeiro, F.; Gallego-Urrea, J.A.; Jurkschat, K.; Crossley, A.; Hassellöv, M.; Taylor, C.; Soares, A.M.; Loureiro, S. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci. Total. Environ. 2014, 466, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Angel, B.M.; Batley, G.E.; Jarolimek, C.V.; Rogers, N.J. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 2013, 93, 359–365. [Google Scholar] [CrossRef]
- WHO. Silver in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2003; Volume 2. [Google Scholar]
- Kwok, K.W.; Auffan, M.; Badireddy, A.R.; Nelson, C.M.; Wiesner, M.R.; Chilkoti, A.; Liu, J.; Marinakos, S.M.; Hinton, D.E. Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): Effect of coating materials. Aquat. Toxicol. 2012, 120, 59–66. [Google Scholar] [CrossRef]
- Becaro, A.A. Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans. Environ. Nanotechnol. Monit. Manag. 2015, 3, 22–29. [Google Scholar] [CrossRef]
- Das, P.; Xenopoulos, M.A.; Williams, C.J.; Hoque, M.E.; Metcalfe, C.D. Effects of silver nanoparticles on bacterial activity in natural waters. Environ. Toxicol. Chem. 2012, 31, 122–130. [Google Scholar] [CrossRef]
- Zada, B.; Mahmood, T.; Malik, S.A. Effect of iron nanoparticles on hyacinth’s fermentation. Int. J. Sci. 2013, 2, 78–92. [Google Scholar]
- Eduok, S.; Martin, B.; Villa, R.; Nocker, A.; Jefferson, B.; Coulon, F. Evaluation of engineered nanoparticle toxic effect on wastewater microorganisms: Current status and challenges. Ecotoxicol. Environ. Saf. 2013, 95, 1–9. [Google Scholar] [CrossRef]
- Klaine, S.J.; Alvarez, P.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825–1851. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, D.A.; Suresh, A.K.; Holton, G.A.; McKeown, C.K.; Wang, W.; Gu, B.; Mortensen, N.P.; Allison, D.P.; Joy, D.C.; Allison, M.R.; et al. Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl. Environ. Microbiol. 2010, 76, 7981–7989. [Google Scholar] [CrossRef]
- Martinez-Gutierrez, F.; Olive, P.L.; Banuelos, A.; Orrantia, E.; Nino, N.; Sanchez, E.M.; Ruiz, F.; Bach, H.; Av-Gay, Y. Synthesis, characterisation, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Castanon, G.A.; Nino-Martinez, N.; Martinez-Gutierrez, F.; Martinez-Mendoza, J.R.; Ruiz, F. Synthesis and antibacterial activity of silver nanoparticle with different sizes. J. Nanopart. Res. 2008, 10, 1343–1348. [Google Scholar] [CrossRef]
- Choi, O.; Deng, K.K.; Kim, N.J.; Ross Jr, L.; Surampalli, R.Y.; Hu, Z. The inhibitory effect of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008, 42, 3066–3074. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticles? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef]
- García, A.; Delgado, L.; Torà, J.A.; Casals, E.; González, E.; Puntes, V.; Font, X.; Carrera, J.; Sánchez, A. Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J. Hazard. Mater. 2012, 199–200, 64–72. [Google Scholar] [CrossRef]
- Lin, D.; Xing, B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007, 150, 243–250. [Google Scholar] [CrossRef]
- Stampoulis, D.; Sinha, S.K.; White, J.C. Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 2009, 43, 9473–9479. [Google Scholar] [CrossRef]
- Brar, S.K.; Verma, M.; Tyagi, R.D.; Surampalli, R.Y. Engineered nanoparticles in wastewater and wastewater sludge: Evidence and impacts. Waste Manag. 2010, 30, 504–520. [Google Scholar] [CrossRef] [PubMed]
- Lazar, V. Quorum sensing in biofilm show to destroy the bacterial citadels or their cohesion/power? Anaerobe 2011, 17, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Dai, T.; Huang, L.; Kurup, D.B.; Tegos, G.P.; Jahnke, A.; Wharton, T.; Hamblin, M.R. Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine 2010, 5, 1525–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, M.; Kon, K.; Ingle, A.; Duran, N.; Galdiero, S.; Galdiero, M. Broad-spectrum bioactivities of silver nanoparticles: The emerging trends and future prospects. Appl. Microbiol. Biotechnol. 2014, 98, 1951–1961. [Google Scholar] [CrossRef] [PubMed]
- Mu, H.; Chen, Y.; Xiao, N. Effects of metal oxide nanoparticles (TiO2, Al 2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Bioresour. Technol. 2011, 102, 10305–10311. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.L.; Ortiz, R.; Steele, T.W.; Stuckey, D.C. Toxicants inhibiting anaerobic digestion: A review. Biotechnol. Adv. 2014, 32, 1523–1534. [Google Scholar] [CrossRef] [PubMed]
- Theivasanthi, T.; Alagar, M. Studies of copper nanoparticles effects on micro-organisms. Ann. Biol. Res. 2011, 2, 368–373. [Google Scholar]
- Liu, G.; Wang, D.; Wang, J.; Mendoza, C. Effect of ZnO particles on activated sludge: Role of particle dissolution. Sci. Total Environ. 2011, 409, 2852–2857. [Google Scholar] [CrossRef]
NPs Type | NP size | Concentration | Feedstock | Temperature | Incubation Time | Effect |
---|---|---|---|---|---|---|
CeO2 | 192 nm | 10 mg/L | Sludge from UASB reactor | 30 °C | 40 | 11% Increase in biogas production [55] |
Fe3O4 | 7 nm | 100 ppm | Waste water Sludge | 37 °C | 60 | 180% Increase in biogas production and 234% increase in methane [46] |
Fe/SiO2 | 105 mol/L | – | 55 °C | – | 7% Increase in methane production [57] | |
Pt/SiO2 | – | 105 mol/L | – | 55 °C | – | 7% Increase in methane production [57] |
Co/SiO2 | – | 105 mol/L | – | 55 °C | – | 48% Increase in methane production [57] |
Ni/SiO2 | – | 105 mol/L | – | 55 °C | – | 70% Increase in methane production [57] |
Co | 28 nm | 1 mg/L | fresh raw manure | 37 °C | 40 | 71% increase in biogas production |
45.92% increase in methane production [58] | ||||||
Ni | 17 nm | 2 mg/L | fresh raw manure | 37 °C | 40 | 78.53% increase in biogas production |
116.76% increase in methane production [58] | ||||||
Fe | 9 nm | 20 mg/L | fresh raw manure | 37 °C | 40 | 47.7% increase in biogas production |
67% increase in methane production [58] | ||||||
Fe3O4 | 7 nm | 20 mg/L | fresh raw manure | 37 °C | 40 | 73% increase in biogas production |
115.66% increase in methane production [58] | ||||||
ZnO | 140 nm | 1 mg/g-TSS 10 mg/g-TSS 50 mg/g-TSS | WAS AGS | 35 °C | 40 105 | No effect [59] No effect [60] No effect [60] |
nZVI | <50 nm | 10 mg/g-TSS | WAS | 37 °C | 30 | 120% increase in methane production [61] |
Fe2O3 | <30 nm | 100 mg/g-TSS | WAS | 37 °C | 30 | 117% increase in methane production [61] |
Substrate | Iron Type | Dosage (g/L) | Temperature (°C) | Increment in CH4 Yield (%) | Increment in COD/VSS Removal (%) | Reference |
---|---|---|---|---|---|---|
Excess sludge | Scrap iron | 10 | 35 | 10.1 a | 83.3 | [78] |
21.4 b | ||||||
Excess sludge | Scrap iron | 4 | 35 | 43.5 | 33.6 c | [79] |
Swine wastewater | ZVI powder | 25 | 30 | 145.5 | 56.2 d | [80] |
Excess sludge | nZVI | 1 | 37 | 25.2 | 22.0 d | [81] |
ZVI powder | 16.7 | 37 | 40.8 | 48.4 d | ||
Excess sludge | mZVI | 10 | 35 | 131.6 | NA | [82] |
nZVI | 10 | 35 | 46.1 | NA | ||
Pig manure | mZVI | 20 | 35 | 20 | NA | [83] |
Manure | nZVI | 0.02 | 37 | 159 | NA | [84,85] |
mZVI | 12 | 35 | 41.7 | 105.9 c | ||
Excess sludge | Scrap iron | 2.385 | 35 | 38.3 | NA | [86] |
Excess sludge | nZVI | 16.6 | 35 | 1304 | NA | [87] |
Scrap iron | 33.3 | 35 | 25.3 | NA |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faisal, S.; Yusuf Hafeez, F.; Zafar, Y.; Majeed, S.; Leng, X.; Zhao, S.; Saif, I.; Malik, K.; Li, X. A Review on Nanoparticles as Boon for Biogas Producers—Nano Fuels and Biosensing Monitoring. Appl. Sci. 2019, 9, 59. https://doi.org/10.3390/app9010059
Faisal S, Yusuf Hafeez F, Zafar Y, Majeed S, Leng X, Zhao S, Saif I, Malik K, Li X. A Review on Nanoparticles as Boon for Biogas Producers—Nano Fuels and Biosensing Monitoring. Applied Sciences. 2019; 9(1):59. https://doi.org/10.3390/app9010059
Chicago/Turabian StyleFaisal, Shah, Fauzia Yusuf Hafeez, Yusuf Zafar, Sabahat Majeed, Xiaoyun Leng, Shuai Zhao, Irfan Saif, Kamran Malik, and Xiangkai Li. 2019. "A Review on Nanoparticles as Boon for Biogas Producers—Nano Fuels and Biosensing Monitoring" Applied Sciences 9, no. 1: 59. https://doi.org/10.3390/app9010059
APA StyleFaisal, S., Yusuf Hafeez, F., Zafar, Y., Majeed, S., Leng, X., Zhao, S., Saif, I., Malik, K., & Li, X. (2019). A Review on Nanoparticles as Boon for Biogas Producers—Nano Fuels and Biosensing Monitoring. Applied Sciences, 9(1), 59. https://doi.org/10.3390/app9010059