Non-Invasive Morphological Characterization of Rice Leaf Bulliform and Aerenchyma Cellular Regions Using Low Coherence Interferometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Configuration of SS-OCT
2.2. Preparation of Rice Leaf Specimens
3. Results
3.1. Bi-Directional Investigation of Rice Leaf Specimen
3.2. Volumetric and Depth Dependent En-Face Visualization
3.3. Quantitatively Enumerated Small Veins and Morphological Angular Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hossain, M.; Fischer, K.J. Rice research for food security and sustainable agricultural development in Asia: Achievements and future challenges. GeoJournal 1995, 35, 286–298. [Google Scholar] [CrossRef]
- Barker, R.; Herdt, R.W.; Rose, B. The Rice Economy of Asia; Routledge: Abingdon-on-Thames, UK, 2014. [Google Scholar]
- Zou, L.P.; Sun, X.H.; Zhang, Z.G.; Liu, P.; Wu, J.X.; Tian, C.J.; Qiu, J.L.; Lu, T.G. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol. 2011, 156, 1589–1602. [Google Scholar] [CrossRef]
- Jane, W.-N.; Chiang, S.-H. Morphology and development of bulliform cells in Arundo formosana Hack. Taiwania 1991, 36, 85–97. [Google Scholar]
- Zou, L.; Zhang, Z.; Qi, D.; Peng, M.; Lu, T. Cytological mechanisms of leaf rolling in rice. Crop Sci. 2014, 54, 198–209. [Google Scholar] [CrossRef]
- Smith, K.; Ball, T.; Conen, F.; Dobbie, K.; Massheder, J.; Rey, A. Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes. Eur. J. Soil Sci. 2003, 54, 779–791. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Papen, H.; Rennenberg, H. Scanning electron microscopy analysis of the aerenchyma in two rice cultivars. Phyton 2000, 40, 43–55. [Google Scholar]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Iglesias, A.; Yang, X.B.; Epstein, P.R.; Chivian, E. Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob. Chang. Hum. Health 2001, 2, 90–104. [Google Scholar] [CrossRef]
- Li, Z.; Paterson, A.H.; Pinson, S.R.; Stansel, J.W. RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.). Euphytica 1999, 109, 79–84. [Google Scholar] [CrossRef]
- Zhao, S.-Q.; Hu, J.; Guo, L.-B.; Qian, Q.; Xue, H.-W. Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar. Cell Res. 2010, 20, 935. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Woo, M.-O.; Lee, D.; Lee, G.; Kim, B.; Koh, H.-J. Identification of a novel candidate gene for rolled leaf in rice. Genes Genomics 2016, 38, 1077–1084. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, H.; Fan, J.; Wang, Y.; Li, Y.; Chen, J.; Fan, J.; Yang, S.; Hu, L.; Leung, H. Genetic diversity and disease control in rice. Nature 2000, 406, 718. [Google Scholar] [CrossRef]
- Gnanamanickam, S.; Priyadarisini, V.B.; Narayanan, N.; Vasudevan, P.; Kavitha, S. An overview of bacterial blight disease of rice and strategies for its management. Curr. Sci. 1999, 77, 1435–1444. [Google Scholar]
- Vasudevan, P.; Kavitha, S.; Priyadarisini, V.B.; Babujee, L.; Gnanamanickam, S.S. Biological Control of Crop Diseases; Marcel Dekker Inc.: New York, NY, USA, 2002; pp. 11–32. [Google Scholar]
- Lim, S.; Wong, S.; Yeong, C.; Lee, S.; Goh, C.J. Rapid detection of cymbidium mosaic virus by the polymerase chain reaction (PCR). J. Virol. Methods 1993, 41, 37–46. [Google Scholar] [CrossRef]
- Oard, J.H.; Dronavalli, S.J. Rapid isolation of rice and maize DNA for analysis by random-primer PCR. Plant Mol. Biol. Rep. 1992, 10, 236–241. [Google Scholar] [CrossRef]
- Tullis, E.J. Histological studies of rice leaves infected with Helminthosporium oryzae. J. Agric. Res. 1935, 50, 81. [Google Scholar]
- Williams, M.; Pande, N.; Nair, S.; Mohan, M.; Bennett, J.J.T.; Genetics, A. Restriction fragment length polymorphism analysis of polymerase chain reaction products amplified from mapped loci of rice (Oryza sativa L.) genomic DNA. Theor. Appl. Genet. 1991, 82, 489–498. [Google Scholar] [CrossRef]
- Barreiro, P.; Zheng, C.; Sun, D.-W.; Hernández-Sánchez, N.; Perez-Sanchez, J.; Ruiz-Cabello, J. Non-destructive seed detection in mandarins: Comparison of automatic threshold methods in FLASH and COMSPIRA MRIs. Postharvest Biol. Technol. 2008, 47, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Van As, H.J. Intact plant MRI for the study of cell water relations, membrane permeability, cell-to-cell and long distance water transport. J. Exp. Bot. 2006, 58, 743–756. [Google Scholar] [CrossRef] [Green Version]
- Jahnke, S.; Menzel, M.I.; Van Dusschoten, D.; Roeb, G.W.; Bühler, J.; Minwuyelet, S.; Blümler, P.; Temperton, V.M.; Hombach, T.; Streun, M.J. Combined MRI–PET dissects dynamic changes in plant structures and functions. Plant J. 2009, 59, 634–644. [Google Scholar] [CrossRef]
- Bernal, J.; Fankuchen, I.J. X-ray and crystallographic studies of plant virus preparations: I. Introduction and preparation of specimens II. Modes of aggregation of the virus particles. J. Gen. Physiol. 1941, 25, 111. [Google Scholar] [CrossRef]
- Hubeau, M.; Steppe, K.J. Plant-PET scans: In vivo mapping of xylem and phloem functioning. Trends Plant Sci. 2015, 20, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Truernit, E.; Haseloff, J. A simple way to identify non-viable cells within living plant tissue using confocal microscopy. Plant Methods 2008, 4, 15. [Google Scholar] [CrossRef]
- Sridar, S.; Raman, S.; Kumar, R. Nature’s design for superhydrophobicity in tropical leaves. Surf. Innov. 2015, 3, 144–150. [Google Scholar] [CrossRef]
- Grulkowski, I.; Liu, J.J.; Potsaid, B.; Jayaraman, V.; Lu, C.D.; Jiang, J.; Cable, A.E.; Duker, J.S.; Fujimoto, J.G. Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers. Biomed. Opt. Express 2012, 3, 2733–2751. [Google Scholar] [CrossRef] [Green Version]
- Potsaid, B.; Baumann, B.; Huang, D.; Barry, S.; Cable, A.E.; Schuman, J.S.; Duker, J.S.; Fujimoto, J.G. Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt. Express 2010, 18, 20029–20048. [Google Scholar] [CrossRef]
- Shimada, Y.; Nakagawa, H.; Sadr, A.; Wada, I.; Nakajima, M.; Nikaido, T.; Otsuki, M.; Tagami, J.; Sumi, Y.J. Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo. J. Biophotonics 2014, 7, 506–513. [Google Scholar] [CrossRef]
- Shimada, Y.; Sadr, A.; Burrow, M.F.; Tagami, J.; Ozawa, N.; Sumi, Y.J. Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries. J. Dent. 2010, 38, 655–665. [Google Scholar] [CrossRef]
- Cernat, R.; Tatla, T.S.; Pang, J.; Tadrous, P.J.; Bradu, A.; Dobre, G.; Gelikonov, G.; Gelikonov, V.; Podoleanu, A.G. Dual instrument for in vivo and ex vivo OCT imaging in an ENT department. Biomed. Opt. Express 2012, 3, 3346–3356. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Kim, P.; Lee, J.; Kim, S.; Park, S.; Choi, S.H.; Hwang, J.; Lee, J.H.; Lee, H.; Wijesinghe, R.E. Non-destructive identification of weld-boundary and porosity formation during laser transmission welding by using optical coherence tomography. IEEE Access 2018, 6, 76768–76775. [Google Scholar] [CrossRef]
- Shirazi, M.F.; Wijesinghe, R.E.; Ravichandran, N.K.; Kim, P.; Jeon, M.; Kim, J. Quality assessment of the optical thin films using line field spectral domain optical coherence tomography. Opt. Lasers Eng. 2018, 110, 47–53. [Google Scholar] [CrossRef]
- Wijesinghe, R.E.; Lee, S.-Y.; Ravichandran, N.K.; Shirazi, M.F.; Kim, P.; Jung, H.-Y.; Jeon, M.; Kim, J. Biophotonic approach for the characterization of initial bitter-rot progression on apple specimens using optical coherence tomography assessments. Sci. Rep. 2018, 8, 15816. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Lee, S.-Y.; Kim, J.-Y.; Jung, H.-Y.; Kim, J. Optical sensing method for screening disease in melon seeds by using optical coherence tomography. Sensors 2011, 11, 9467–9477. [Google Scholar] [CrossRef] [PubMed]
- Manattayil, J.; Ravichandran, N.; Wijesinghe, R.; Shirazi, M.; Lee, S.-Y.; Kim, P.; Jung, H.-Y.; Jeon, M.; Kim, J. Non-Destructive Classification of Diversely Stained Capsicum annuum Seed Specimens of Different Cultivars Using Near-Infrared Imaging Based Optical Intensity Detection. Sensors 2018, 18, 2500. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Cho, N.H.; Jung, U.; Lee, C.; Kim, J.-Y.; Kim, J. Ultra-fast displaying spectral domain optical Doppler tomography system using a graphics processing unit. Sensors 2012, 12, 6920–6929. [Google Scholar] [CrossRef]
- Ravichandran, N.K.; Wijesinghe, R.E.; Shirazi, M.F.; Park, K.; Lee, S.-Y.; Jung, H.-Y.; Jeon, M.; Kim, J. In vivo monitoring on growth and spread of gray leaf spot disease in capsicum annuum leaf using spectral domain optical coherence tomography. J. Spectrosc. 2016, 2016. [Google Scholar] [CrossRef]
- Wijesinghe, R.E.; Lee, S.-Y.; Kim, P.; Jung, H.-Y.; Jeon, M.; Kim, J. Optical inspection and morphological analysis of diospyros kaki plant leaves for the detection of circular leaf spot disease. Sensors 2016, 16, 1282. [Google Scholar] [CrossRef]
- Wijesinghe, R.E.H.; Lee, S.-Y.; Kim, P.; Jung, H.-Y.; Jeon, M.; Kim, J. Optical sensing method to analyze germination rate of Capsicum annum seeds treated with growth-promoting chemical compounds using optical coherence tomography. J. Biomed. Opt. 2017, 22, 091502. [Google Scholar] [CrossRef]
- Lee, C.-H.; Lee, S.-Y.; Jung, H.-Y.; Kim, J.-H. The application of optical coherence tomography in the diagnosis of Marssonina blotch in apple leaves. J. Opt. Soc. Korea 2012, 16, 133–140. [Google Scholar] [CrossRef]
- Wang, K.C.; Astell, C.J.; Wijesinghe, P.; Larcombe, A.N.; Pinniger, G.J.; Zosky, G.R.; Kennedy, B.F.; Berry, L.J.; Sampson, D.D.; James, A.L. Optical coherence tomography-based contact indentation for diaphragm mechanics in a mouse model of transforming growth factor alpha induced lung disease. Sci. Rep. 2017, 7, 1517. [Google Scholar] [CrossRef]
- Ravichandran, N.K.; Wijesinghe, R.E.; Shirazi, M.F.; Kim, J.; Jung, H.-Y.; Jeon, M.; Lee, S.-Y. In Vivo Non-Destructive Monitoring of Capsicum Annuum Seed Growth with Diverse NaCl Concentrations Using Optical Detection Technique. Sensors 2017, 17, 2887. [Google Scholar] [CrossRef]
- Ravichandran, N.K.; Wijesinghe, R.E.; Lee, S.-Y.; Shirazi, M.F.; Park, K.; Jung, H.-Y.; Jeon, M.; Kim, J. Swept source optical coherence tomography for in vivo growth monitoring of capsicum annuum seeds treated with different NaCl concentrations. In Proceedings of the 2017 25th Optical Fiber Sensors Conference, Jeju, Korea, 24–28 April 2017; pp. 1–4. [Google Scholar]
- Marques, M.J.; Rivet, S.; Bradu, A.; Podoleanu, A. Complex master-slave for long axial range swept-source optical coherence tomography. OSA Contin. 2018, 1, 1251–1259. [Google Scholar] [CrossRef]
- Rivet, S.; Maria, M.; Bradu, A.; Feuchter, T.; Leick, L.; Podoleanu, A. Complex master slave interferometry. Opt. Express 2016, 24, 2885–2904. [Google Scholar] [CrossRef]
- Liu, B.; Azimi, E.; Brezinski, M.E. True logarithmic amplification of frequency clock in SS-OCT for calibration. Biomed. Opt. Express 2011, 2, 1769–1777. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Wijesinghe, R.; Lee, J.; Shirazi, M.; Kim, P.; Jang, J.; Jeon, M.; Kim, J. Multiple Wavelength Optical Coherence Tomography Assessments for Enhanced Ex Vivo Intra-Cochlear Microstructural Visualization. Electronics 2018, 7, 133. [Google Scholar] [CrossRef]
- Evans, D.E. Aerenchyma formation. New Phytol. 2004, 161, 35–49. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Ren, B.; Ding, L.; Gao, C.; Shen, Q.; Guo, S. Drought-induced root aerenchyma formation restricts water uptake in rice seedlings supplied with nitrate. Plant Cell Physiol. 2012, 53, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671. [Google Scholar] [CrossRef]
- Hsiao, T.C.; O’Toole, J.C.; Yambao, E.B.; Turner, N.C. Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oryza sativa L.). Plant Physiol. 1984, 75, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Cal, A.J.; Sanciangco, M.; Rebolledo, M.C.; Luquet, D.; Torres, R.O.; McNally, K.L.; Henry, A. Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought. Plant Cell Environ. 2019. [Google Scholar] [CrossRef]
- Xu, P.; Ali, A.; Han, B.; Wu, X. Current advances in molecular basis and mechanisms regulating leaf morphology in rice. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef]
- Armstrong, W. A re-examination of the functional significance of aerenchyma. Physiol. Plant. 1972, 27, 173–177. [Google Scholar] [CrossRef]
- Zhang, G.-H.; Xu, Q.; Zhu, X.-D.; Qian, Q.; Xue, H.-W. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell 2009, 21, 719–735. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Yang, C.-M.; Chang, K.-W.; Shen, Y. Effects of nitrogen status on leaf anatomy, chlorophyll content and canopy reflectance of paddy rice. Bot. Stud. 2011, 52, 295–303. [Google Scholar]
- Turner, N.C.; O’Toole, J.C.; Cruz, R.; Namuco, O.; Ahmad, S. Responses of seven diverse rice cultivars to water deficits I. Stress development, canopy temperature, leaf rolling and growth. Field Crops Res. 1986, 13, 257–271. [Google Scholar] [CrossRef]
Small Vein (ea) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Healthy | Infected | ||||||||
Number | Avg. | Min. | Max. | StdDev. | Number | Avg. | Min. | Max. | StdDev. |
1 | 10 | 10 | 10 | 0 | 1 | 18 | 17 | 19 | 1 |
2 | 9 | 8 | 9 | 1 | 2 | 12 | 12 | 12 | 0 |
3 | 11 | 10 | 12 | 1 | 3 | 14 | 13 | 14 | 1 |
4 | 10 | 9 | 10 | 1 | 4 | 18 | 17 | 18 | 1 |
5 | 8 | 8 | 9 | 1 | 5 | 18 | 17 | 19 | 1 |
Thickness (μm) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Healthy | Infected | ||||||||
Number | Avg. | Min. | Max. | StdDev. | Number | Avg. | Min. | Max. | StdDev. |
1 | 597.1 | 586.9 | 602.7 | 5.6 | 1 | 211.5 | 198.7 | 219.3 | 7.2 |
2 | 667.6 | 663.4 | 668.9 | 2.1 | 2 | 126.9 | 117.8 | 138.1 | 6.8 |
3 | 427.2 | 419.5 | 434.8 | 5.1 | 3 | 176.1 | 166.5 | 181.5 | 5.3 |
4 | 641.6 | 635.8 | 647.2 | 4.8 | 4 | 111.4 | 102 | 126.8 | 9.6 |
5 | 798.8 | 795.7 | 801 | 2.5 | 5 | 153.8 | 144.5 | 159.6 | 6.2 |
Angle (°) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Healthy | Infected | ||||||||
A1 | A1 | ||||||||
Number | Avg. | Min. | Max. | StdDev. | Number | Avg. | Min. | Max. | StdDev. |
1 | 106.2 | 104.4 | 108.3 | 1.6 | 1 | 137.6 | 124.6 | 147.2 | 8.6 |
2 | 93.3 | 92.4 | 95.2 | 1.1 | 2 | 143.4 | 141.2 | 146.6 | 1.9 |
3 | 117.9 | 115.1 | 120.7 | 2.3 | 3 | 131.4 | 128.9 | 134.4 | 1.8 |
4 | 117.6 | 115.4 | 121.1 | 5.7 | 4 | 131.8 | 127.1 | 135.3 | 2.6 |
5 | 110.6 | 110 | 111.4 | 2.9 | 5 | 129.8 | 126.8 | 133.7 | 2.5 |
A2 | A2 | ||||||||
Number | Avg. | Min. | Max. | StdDev. | Number | Avg. | Min. | Max. | StdDev. |
1 | 80.3 | 77.7 | 83.4 | 2.3 | 1 | 93.3 | 89.8 | 98.2 | 3.3 |
2 | 92.5 | 90.5 | 95.6 | 1.7 | 2 | 112.9 | 112.1 | 114.1 | 0.8 |
3 | 86.6 | 85.7 | 88.4 | 1 | 3 | 102.4 | 98.1 | 107.2 | 3.3 |
4 | 75.3 | 71.7 | 79.9 | 3 | 4 | 94.4 | 87.3 | 98.8 | 4.1 |
5 | 74.6 | 72.6 | 75.5 | 1 | 5 | 97.5 | 93.1 | 100 | 2.4 |
A3 | A3 | ||||||||
Number | Avg. | Min. | Max. | StdDev. | Number | Avg. | Min. | Max. | StdDev. |
1 | 112.1 | 110 | 113.4 | 1.2 | 1 | 128 | 123 | 126.6 | 1.3 |
2 | 108.9 | 106.2 | 110.2 | 1.4 | 2 | 146.9 | 144.9 | 148.2 | 1.2 |
3 | 125.1 | 122.9 | 127.1 | 1.6 | 3 | 148.2 | 141.9 | 155.6 | 4.7 |
4 | 109.8 | 107.8 | 112.8 | 2.1 | 4 | 132.5 | 129.5 | 136 | 2.3 |
5 | 98.7 | 92.7 | 102.6 | 3.2 | 5 | 136.8 | 134.4 | 140.8 | 2.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Du, X.; Kim, S.; Kim, P.; Wijesinghe, R.E.; Yun, B.-J.; Kim, K.-M.; Jeon, M.; Kim, J. Non-Invasive Morphological Characterization of Rice Leaf Bulliform and Aerenchyma Cellular Regions Using Low Coherence Interferometry. Appl. Sci. 2019, 9, 2104. https://doi.org/10.3390/app9102104
Kim H, Du X, Kim S, Kim P, Wijesinghe RE, Yun B-J, Kim K-M, Jeon M, Kim J. Non-Invasive Morphological Characterization of Rice Leaf Bulliform and Aerenchyma Cellular Regions Using Low Coherence Interferometry. Applied Sciences. 2019; 9(10):2104. https://doi.org/10.3390/app9102104
Chicago/Turabian StyleKim, Hyeree, XiaoXuan Du, Sungwook Kim, Pilun Kim, Ruchire Eranga Wijesinghe, Byoung-Ju Yun, Kyung-Min Kim, Mansik Jeon, and Jeehyun Kim. 2019. "Non-Invasive Morphological Characterization of Rice Leaf Bulliform and Aerenchyma Cellular Regions Using Low Coherence Interferometry" Applied Sciences 9, no. 10: 2104. https://doi.org/10.3390/app9102104
APA StyleKim, H., Du, X., Kim, S., Kim, P., Wijesinghe, R. E., Yun, B. -J., Kim, K. -M., Jeon, M., & Kim, J. (2019). Non-Invasive Morphological Characterization of Rice Leaf Bulliform and Aerenchyma Cellular Regions Using Low Coherence Interferometry. Applied Sciences, 9(10), 2104. https://doi.org/10.3390/app9102104