Reconstruction of the Microstructure of Cyanate Ester Resin by Using Prepared Cyanate Ester Resin Nanoparticles and Analysis of the Curing Kinetics Using the Avrami Equation of Phase Change
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of BADCy Resin Nanoparticles
2.3. Preparation of BADCy Resin Prepolymer
2.4. Characterization and Measurements
3. Results and Discussion
3.1. Characterization of the BADCy Resin Microparticles
3.2. Cure Acceleration
3.3. Kinetic Analysis Using the Avrami Equation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hamerton, I. Chemistry and Technology of Cyanate Ester Resins; Springer: Dordrecht, The Netherlands, 1994. [Google Scholar] [CrossRef]
- Wooster, T.J.; Abrol, S.; Hey, J.M.; MacFarlane, D.R. Thermal, mechanical, and conductivity properties of cyanate ester composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 75–82. [Google Scholar] [CrossRef]
- Gu, A. High performance bismaleimide/cyanate ester hybrid polymer networks with excellent dielectric properties. Compos. Sci. Technol. 2006, 66, 1749–1755. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, G.; Kou, K.; Pan, C.; Feng, A. Mechanical, thermal conductive and dielectrical properties of organic montmorillonite reinforced benzoxazine/cyanate ester copolymer for electronic packaging. J. Mater. Sci. Mater. Electron. 2016, 27, 8279–8287. [Google Scholar] [CrossRef]
- Goertzen, W.K.; Kessler, M.R. Thermal and mechanical evaluation of cyanate ester composites with low-temperature processability. Compos. Part A Appl. Sci. Manuf. 2007, 38, 779–784. [Google Scholar] [CrossRef]
- Gu, J.; Dong, W.; Tang, Y.; Guo, Y.; Tang, L.; Kong, J.; Tadakamalla, S.; Wang, B.; Guo, Z. Ultralow dielectric, fluoride-containing cyanate ester resins with improved mechanical properties and high thermal and dimensional stabilities. J. Mater. Chem. C 2017, 5, 6929–6936. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Z.; Yuan, L.; Liang, G.; Gu, A. Developing high performance cyanate ester resin with significantly reduced postcuring temperature while improved toughness, rigidity, thermal and dielectric properties based on manganese-Schiff base hybridized graphene oxide. Chem. Eng. J. 2016, 298, 214–224. [Google Scholar] [CrossRef]
- Ye, Y.; Yuan, L.; Liang, G.; Gu, A. Simultaneously toughening and strengthening cyanate ester resin with better dielectric properties by building nanostructures in its crosslinked network using polyimide-block-polysiloxane rod-coil block copolymers. RSC Adv. 2016, 6, 49436–49447. [Google Scholar] [CrossRef]
- Ohashi, S.; Pandey, V.; Arza, C.R.; Froimowicz, P.; Ishida, H. Simple and low energy consuming synthesis of cyanate ester functional naphthoxazines and their properties. Polym. Chem. 2016, 7, 2245–2252. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, L.; Dang, F.; Liu, Y.; Fei, Z.; Shao, Q.; Lin, H.; Guo, J.; Xiang, L.; Yerra, N.; et al. Experimental and simulation-based understanding of morphology controlled barium titanate nanoparticles under co-adsorption of surfactants. CrystEngComm 2017, 19, 3288–3298. [Google Scholar] [CrossRef]
- Tang, Y.-S.; Kong, J.; Gu, J.-W.; Liang, G.-Z. Reinforced Cyanate Ester Resins with Carbon Nanotubes: Surface Modification, Reaction Activity and Mechanical Properties Analyses. Polym.-Plast. Tech. Eng. 2009, 48, 359–366. [Google Scholar] [CrossRef]
- Simon, S.L.; Gillham, J.K. Cure kinetics of a thermosetting liquid dicyanate ester monomer/high-Tg polycyanurate material. Appl. Polym. Sci. 1993, 47, 461–485. [Google Scholar] [CrossRef]
- Fang, T.; Shimp, D.A. Polycyanate esters: Science and applications. Prog. Polym. Sci. 1995, 20, 61–118. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, L.; Liang, G.; Gu, A. Tough and thermally resistant cyanate ester resin with significantly reduced curing temperature and low dielectric loss based on developing an efficient graphene oxide/Mn ion metal–organic framework hybrid. RSC Adv. 2016, 6, 3290–3300. [Google Scholar] [CrossRef]
- Laskoski, M.; Dominguez, D.D.; Keller, T.M. Development of an oligomeric cyanate ester resin with enhanced processability. J. Chem. 2005, 15, 1611. [Google Scholar] [CrossRef]
- Pradhan, S.; Brahmbhatt, P.; Sudha, J.D.; Unnikrishnan, J. Influence of manganese acetyl acetonate on the cure-kinetic parameters of cyanate ester–epoxy blend systems in fusion relevant magnets winding packs. J. Therm. Anal. Calorim. 2011, 105, 301–311. [Google Scholar] [CrossRef]
- Mathew, D.; Nair, C.P.R.; Krishnan, K.; Ninan, K.N. Catalysis of the cure reaction of Bisphenol A dicyanate. A DSC study. J. Polym. Sci. Part A Polym. Chem. 2015, 37, 1103–1114. [Google Scholar] [CrossRef]
- Gusakova, K.; Saiter, J.-M.; Grigoryeva, O.; Gouanve, F.; Fainleib, A.; Starostenko, O.; Grande, D. Annealing behavior and thermal stability of nanoporous polymer films based on high-performance Cyanate Ester Resins. Polym. Degrad. Stab. 2015, 120, 402–409. [Google Scholar] [CrossRef]
- Li, W.; Liang, G.; Xin, W. Triazine reaction of cyanate ester resin systems catalyzed by organic tin compound: Kinetics and mechanism. Polym. Int. 2004, 53, 869–876. [Google Scholar] [CrossRef]
- Augustine, D.; Mathew, D.; Nair, C.P.R. Phthalonitrile resin bearing cyanate ester groups: Synthesis and characterization. RSC Adv. 2015, 5, 91254–91261. [Google Scholar] [CrossRef]
- Shah, S.S.A.; Nasir, H.; Ul-Haq, N. Synthesis of Cyanate Ester Based Thermoset Resin by Using Copper (II) Oxalate as Catalyst and its Application in Carbon Fiber Composites. Nano Hybrids Compos. 2018, 22, 1–9. [Google Scholar] [CrossRef]
- Throckmorton, J.; Palmese, G. Acceleration of cyanate ester trimerization by dicyanamide RTILs. Polymer 2016, 91, 7–13. [Google Scholar] [CrossRef]
- Wooster, T.J.; Abrol, S.; MacFarlane, D.R. Cyanate ester polymerization catalysis by layered-silicates. Polymer 2004, 45, 7845–7852. [Google Scholar] [CrossRef]
- Fainleib, A.; Bardash, L.; Boiteux, G. Catalytic effect of carbon nanotubes on polymerization of cyanate ester resins. Express Polym. Lett. 2009, 3, 477–482. [Google Scholar] [CrossRef]
- Kim, S.-W.; Lu, M.-G.; Shim, M.-J. The Isothermal Cure Kinetic of Epoxy/Amine System Analyzed by Phase Change Theory. Polym. J. 1998, 30, 90–94. [Google Scholar] [CrossRef]
- Domínguez, J.C.; Alonso, M.V.; Oliet, M.; Rojo, E.; Rodríguez, F. Kinetic study of a phenolic-novolac resin curing process by rheological and DSC analysis. Thermochim. Acta 2010, 498, 39–44. [Google Scholar] [CrossRef]
- Pollard, M.; Kardos, J.L. Analysis of epoxy resin curing kinetics using the Avrami theory of phase change. Polym. Eng. Sci. 1987, 27, 829–836. [Google Scholar] [CrossRef]
- Lu, M.G.; Shim, M.J.; Kim, S.W. Dynamic DSC Characterization of Epoxy Resin by Means of the Avrami Equation. J. Therm. Anal. Calorim. 1999, 58, 701–709. [Google Scholar] [CrossRef]
- Chen, D.Z.; He, P.S.; Pan, L.J. Cure kinetics of epoxy-based nanocomposites analyzed by Avrami theory of phase change. Polym. Test. 2003, 22, 689–697. [Google Scholar] [CrossRef]
- Lu, M.G.; Shim, M.J.; Kim, S.W. The macrokinetic model of thermosetting polymers by phase-change theory. Mater. Chem. Phys. 1998, 56, 193–197. [Google Scholar] [CrossRef]
- Peng, L.; Yang, X.; Yu, Y.; Yu, D. Cure kinetics, microheterogeneity, and mechanical properties of the high-temperature cure of vinyl ester resins. J. Appl. Polym. Sci. 2010, 92, 1124–1133. [Google Scholar]
- Kmetty, Á.; Bárány, T.; Karger-Kocsis, J. Self-reinforced polymeric materials: A review. Prog. Polym. Sci. 2010, 35, 1288–1310. [Google Scholar] [CrossRef]
- Ren, P.; Liang, G.; Zhang, Z.; Lu, T. ZnO whisker reinforced M40/BADCy composite. Compos. Part A Appl. Sci. Manuf. 2006, 37, 46–53. [Google Scholar] [CrossRef]
- Ozawa, T. Kinetics of non-isothermal crystallization. Polymer 1971, 12, 150–158. [Google Scholar] [CrossRef]
- Ortiz Vélez, A.; Siles Alvarado, S.; Avendaño-Gómez, J.R. Cure behavior and kinetic study of diglycidyl ether of bisphenol A with a tertiary amine salt by differential scanning calorimetry. Polym. Eng. Sci. 2018, 58, 784–792. [Google Scholar] [CrossRef]
- Desio, G.P.; Rebenfeld, L. Crystallization of fiber-reinforced poly (phenylene sulfide) composites. II. Modeling the crystallization kinetics. Appl. Polym. Sci. 1992, 45, 2005–2020. [Google Scholar] [CrossRef]
BADCy Resin Nanoparticles wt% | Tonset °C | Tpeak °C | ΔH J/g |
---|---|---|---|
0 | 248 | 308 | 303.19 |
4 | 209 | 238 | 423.16 |
8 | 212 | 235 | 441.15 |
10 | 201 | 229 | 370.60 |
Temperature/°C | k′/minn·K−n | n |
---|---|---|
270 | 4.26 ± 1.51 | 1.42 ± 0.17 |
280 | 7.41 ± 1.47 | 1.46 ± 0.17 |
290 | 13.18 ± 1.45 | 1.50 ± 0.11 |
300 | 20.42 ± 1.35 | 1.48 ± 0.12 |
310 | 26.30 ± 1.32 | 1.40 ± 0.11 |
320 | 26.92 ± 1.38 | 1.22 ± 0.14 |
T/°C | 4 wt% | 8 wt% | 10 wt% | |||
---|---|---|---|---|---|---|
k′/minn·K−n | n | k′/minn·K−n | n | k′/minn·K−n | n | |
200 | 0.74 ± 1.31 | 1.46 ± 0.03 | 0.72 ± 1.23 | 1.34 ± 0.09 | 0.78 ± 2.14 | 1.15 ± 0.04 |
210 | 1.35 ± 1.17 | 1.50 ± 0.07 | 1.90 ± 1.26 | 1.46 ± 0.10 | 2.14 ± 1.10 | 1.25 ± 0.03 |
220 | 2.51 ± 1.10 | 1.55 ± 0.11 | 6.31 ± 1.10 | 1.61 ± 0.04 | 4.57 ± 1.20 | 1.21 ± 0.08 |
230 | 4.47 ± 1.15 | 1.59 ± 0.06 | 10.47 ± 1.26 | 1.52 ± 0.10 | 7.07 ± 1.17 | 1.08 ± 0.07 |
240 | 6.31 ± 1.07 | 1.41 ± 0.03 | 11.71 ± 1.20 | 1.31 ± 0.07 | 7.41 ± 1.17 | 0.84 ± 0.07 |
250 | 7.24 ± 1.02 | 1.17 ± 0.01 | 13.08 ± 1.51 | 1.03 ± 0.16 | 8.32 ± 1.09 | 0.74 ± 0.04 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; Liu, B.; Ye, Y.; Liu, Y.; Li, P. Reconstruction of the Microstructure of Cyanate Ester Resin by Using Prepared Cyanate Ester Resin Nanoparticles and Analysis of the Curing Kinetics Using the Avrami Equation of Phase Change. Appl. Sci. 2019, 9, 2365. https://doi.org/10.3390/app9112365
Cao H, Liu B, Ye Y, Liu Y, Li P. Reconstruction of the Microstructure of Cyanate Ester Resin by Using Prepared Cyanate Ester Resin Nanoparticles and Analysis of the Curing Kinetics Using the Avrami Equation of Phase Change. Applied Sciences. 2019; 9(11):2365. https://doi.org/10.3390/app9112365
Chicago/Turabian StyleCao, Hongtao, Beijun Liu, Yiwen Ye, Yunfang Liu, and Peng Li. 2019. "Reconstruction of the Microstructure of Cyanate Ester Resin by Using Prepared Cyanate Ester Resin Nanoparticles and Analysis of the Curing Kinetics Using the Avrami Equation of Phase Change" Applied Sciences 9, no. 11: 2365. https://doi.org/10.3390/app9112365
APA StyleCao, H., Liu, B., Ye, Y., Liu, Y., & Li, P. (2019). Reconstruction of the Microstructure of Cyanate Ester Resin by Using Prepared Cyanate Ester Resin Nanoparticles and Analysis of the Curing Kinetics Using the Avrami Equation of Phase Change. Applied Sciences, 9(11), 2365. https://doi.org/10.3390/app9112365