Relationship of Total Hemoglobin in Subcutaneous Adipose Tissue with Whole-Body and Visceral Adiposity in Humans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Measurements of Anthropometric Parameters
2.3. Measurements of (total-Hb), (oxy-Hb), (deoxy-Hb), µa, and µs′
2.4. Data Analysis for the Threshold by Analyzing the Slopes of (total-Hb) against the Thickness of the Subcutaneous Adipose Tissue in the Abdomen (SATab)
2.5. Statistical Analyses
3. Results
3.1. Participant Profiles
3.2. The Thickness Threshold of the Subcutaneous Adipose Tissue in the Abdomen (SATab)
3.3. Participant Profiles: SegSAT+Mus and SegSAT
3.4. Predictor Analysis for (total-Hb) Using Body Indicators (SATab thickness, %BF, and Visceral Fat Area)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crandall, D.L.; Hausman, G.J.; Kral, J.G. A review of the microcirculation of adipose tissue: Anatomic, metabolic, and angiogenic perspectives. Microcirculation 1997, 4, 211–232. [Google Scholar] [CrossRef] [PubMed]
- Otero-Diaz, B.; Rodriguez-Flores, M.; Sanchez-Munoz, V.; Monraz-Preciado, F.; Ordonez-Ortega, S.; Becerril-Elias, V.; Baay-Guzman, G.; Obando-Monge, R.; Garcia-Garcia, E.; Palacios-Gonzalez, B.; et al. Exercise Induces White Adipose Tissue Browning Across the Weight Spectrum in Humans. Front. Physiol. 2018, 9, 1781. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lee, J.H.; Tian, Y. Critical Genes in White Adipose Tissue Based on Gene Expression Profile Following Exercise. Int. J. Sports Med. 2019, 40, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Kadomatsu, T.; Oike, Y. Angiogenesis in adipose tissue and obesity. J. Clin. Exp. Med. (IGAKU NO AYUMI) 2014, 250, 761–765. [Google Scholar]
- Hamaoka, T.; McCully, K.K.; Quaresima, V.; Yamamoto, K.; Chance, B. Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. J. Biomed. Opt. 2007, 12, 062105. [Google Scholar] [CrossRef] [PubMed]
- Jobsis, F.F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977, 198, 1264–1267. [Google Scholar] [CrossRef]
- Delpy, D.T.; Cope, M. Quantification in tissue near-infrared spectroscopy. Philos. Trans. R. Soc. B Biol. Sci. 1997, 352, 649–659. [Google Scholar] [CrossRef]
- Ferrari, M.; Mottola, L.; Quaresima, V. Principles, techniques, and limitations of near infrared spectroscopy. Can. J. Appl. Physiol. 2004, 29, 463–487. [Google Scholar] [CrossRef]
- Chance, B.; Dait, M.T.; Zhang, C.; Hamaoka, T.; Hagerman, F. Recovery from exercise-induced desaturation in the quadriceps muscles of elite competitive rowers. Am. J. Physiol. 1992, 262, C766–C775. [Google Scholar] [CrossRef]
- Chance, B.; Nioka, S.; Kent, J.; McCully, K.; Fountain, M.; Greenfeld, R.; Holtom, G. Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle. Anal. Biochem. 1988, 174, 698–707. [Google Scholar] [CrossRef]
- Hamaoka, T.; Katsumura, T.; Murase, N.; Nishio, S.; Osada, T.; Sako, T.; Higuchi, H.; Kurosawa, Y.; Shimomitsu, T.; Miwa, M.; et al. Quantification of ischemic muscle deoxygenation by near infrared time-resolved spectroscopy. J. Biomed. Opt. 2000, 5, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Nirengi, S.; Yoneshiro, T.; Sugie, H.; Saito, M.; Hamaoka, T. Human brown adipose tissue assessed by simple, noninvasive near-infrared time-resolved spectroscopy. Obesity (Silver Spring) 2015, 23, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Beauvoit, B.; Chance, B. Time-resolved spectroscopy of mitochondria, cells and tissues under normal and pathological conditions. Mol. Cell Biochem. 1998, 184, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C.; Johnson, P.E.; Bolonchuk, W.W.; Lykken, G.I. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am. J. Clin. Nutr. 1985, 41, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.S.; Hwang, J.S.; Lee, J.A.; Kim, D.H.; Park, K.D.; Jeong, J.S.; Cheon, G.J. Cross-calibration of multi-frequency bioelectrical impedance analysis with eight-point tactile electrodes and dual-energy X-ray absorptiometry for assessment of body composition in healthy children aged 6-18 years. Pediatr. Int. 2009, 51, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.L.; Holmes, J.C.; Desautels, R.L.; Edmonds, L.B.; Nuudi, L. Ability of new octapolar bioimpedance spectroscopy analyzers to predict 4-component-model percentage body fat in Hispanic, black, and white adults. Am. J. Clin. Nutr 2008, 87, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Ryo, M.; Nakamura, T.; Nishida, M.; Takahashi, M.; Hotta, K.; Matsuzawa, Y. Development of Visceral-fat Measuring Apparatus Using Abdominal Bioelectrical Impedance. J. Japan Soc. Stud. Obes. 2003, 136–142. [Google Scholar]
- Ryo, M.; Maeda, K.; Onda, T.; Katashima, M.; Okumiya, A.; Nishida, M.; Yamaguchi, T.; Funahashi, T.; Matsuzawa, Y.; Nakamura, T.; et al. A new simple method for the measurement of visceral fat accumulation by bioelectrical impedance. Diabetes Care 2005, 28, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Ohmae, E.; Oda, M.; Suzuki, T.; Yamashita, Y.; Kakihana, Y.; Matsunaga, A.; Kanmura, Y.; Tamura, M. Clinical evaluation of time-resolved spectroscopy by measuring cerebral hemodynamics during cardiopulmonary bypass surgery. J. Biomed. Opt. 2007, 12, 062112. [Google Scholar] [CrossRef]
- Lemoine, A.Y.; Ledoux, S.; Queguiner, I.; Calderari, S.; Mechler, C.; Msika, S.; Corvol, P.; Larger, E. Link between adipose tissue angiogenesis and fat accumulation in severely obese subjects. J. Clin. Endocrinol. Metab. 2012, 97, E775–E780. [Google Scholar] [CrossRef]
- Ganesan, G.; Warren, R.V.; Leproux, A.; Compton, M.; Cutler, K.; Wittkopp, S.; Tran, G.; O’Sullivan, T.; Malik, S.; Galassetti, P.R.; et al. Diffuse optical spectroscopic imaging of subcutaneous adipose tissue metabolic changes during weight loss. Int. J. Obes. (Lond) 2016, 40, 1292–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunadi, S.; Leung, T.S.; Elwell, C.E.; Tachtsidis, I. Spatial sensitivity and penetration depth of three cerebral oxygenation monitors. Biomed. Opt. Express 2014, 5, 2896–2912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
n = 140 (45 Men/95 Women) | |||
---|---|---|---|
Mean | SD | ||
Age (Year) | 39.3 | ± | 7.59 |
SATab thickness (cm) | 1.50 | ± | 0.80 |
%BF (%) | 25.4 | ± | 7.12 |
visceral fat area (cm2) | 50.4 | ± | 37.6 |
in the abdomen | |||
(total-Hb) (µM) | 19.9 | ± | 15.8 |
(oxy-Hb) (µM) | 13.4 | ± | 11.7 |
(deoxy-Hb) (µM) | 6.88 | ± | 6.31 |
µa (cm−1) | 0.054 | ± | 0.032 |
µs’ (cm−1) | 9.09 | ± | 1.45 |
A SegSAT+Mus | B SegSAT | p-Value | ||||||
n = 72 (26 men/46 women) | n = 68 (19 men/49 women) | |||||||
Mean | SD | Mean | SD | |||||
age (year) | 37.5 | ± | 7.14 | age (year) | 41.2 | ± | 7.63 | = 0.004 b |
SATab thickness (cm) | 0.911 | ± | 0.312 | SATab thickness (cm) | 2.12 | ± | 0.67 | <0.001 a |
%BF (%) | 21.4 | ± | 6.04 | %BF (%) | 29.6 | ± | 5.63 | <0.001 a |
visceral fat area (cm2) | 39.1 | ± | 28.8 | visceral fat area (cm2) | 62.3 | ± | 41.8 | <0.001 b |
in the abdomen | in the abdomen | |||||||
(total-Hb) (µM) | 29.1 | ± | 16.8 | (total-Hb) (µM) | 10.2 | ± | 5.63 | <0.001 b |
(oxy-Hb) (µM) | 20.2 | ± | 12.4 | (oxy-Hb) (µM) | 6.14 | ± | 3.99 | <0.001 b |
(deoxy-Hb) (µM) | 9.47 | ± | 7.46 | (deoxy-Hb) (µM) | 4.15 | ± | 2.96 | <0.001 b |
µa (cm−1) | 0.073 | ± | 0.0337 | µa (cm−1) | 0.035 | ± | 0.0119 | <0.001 b |
µs’ (cm−1) | 9.75 | ± | 1.30 | µs’ (cm−1) | 8.40 | ± | 1.27 | <0.001 a |
A | SegSAT+Mus n = 75 | ||||
95% C.I. for EXP (B) | |||||
p | Exp(B) | Lower | Upper | ||
(total-Hb) | |||||
SATab thickness | 0.009 ** | 0.022 | 0.001 | 0.384 | |
%BF | 0.001 ** | 0.739 | 0.622 | 0.878 | |
visceral fat area | 0.030 * | 0.956 | 0.917 | 0.996 | |
B | SegSAT n = 65 | ||||
95% C.I. for EXP (B) | |||||
p | Exp(B) | Lower | Upper | ||
(total-Hb) | |||||
SATab thickness | - | - | - | - | |
%BF | 0.004 ** | 0.830 | 0.731 | 0.941 | |
visceral fat area | 0.044 * | 0.982 | 0.966 | 1.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuroiwa, M.; Fuse, S.; Amagasa, S.; Kime, R.; Endo, T.; Kurosawa, Y.; Hamaoka, T. Relationship of Total Hemoglobin in Subcutaneous Adipose Tissue with Whole-Body and Visceral Adiposity in Humans. Appl. Sci. 2019, 9, 2442. https://doi.org/10.3390/app9122442
Kuroiwa M, Fuse S, Amagasa S, Kime R, Endo T, Kurosawa Y, Hamaoka T. Relationship of Total Hemoglobin in Subcutaneous Adipose Tissue with Whole-Body and Visceral Adiposity in Humans. Applied Sciences. 2019; 9(12):2442. https://doi.org/10.3390/app9122442
Chicago/Turabian StyleKuroiwa, Miyuki, Sayuri Fuse, Shiho Amagasa, Ryotaro Kime, Tasuki Endo, Yuko Kurosawa, and Takafumi Hamaoka. 2019. "Relationship of Total Hemoglobin in Subcutaneous Adipose Tissue with Whole-Body and Visceral Adiposity in Humans" Applied Sciences 9, no. 12: 2442. https://doi.org/10.3390/app9122442
APA StyleKuroiwa, M., Fuse, S., Amagasa, S., Kime, R., Endo, T., Kurosawa, Y., & Hamaoka, T. (2019). Relationship of Total Hemoglobin in Subcutaneous Adipose Tissue with Whole-Body and Visceral Adiposity in Humans. Applied Sciences, 9(12), 2442. https://doi.org/10.3390/app9122442