A Hybrid Inversion Scheme Combining Markov Chain Monte Carlo and Iterative Methods for Determining Optical Properties of Random Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diffusion Theory
2.1.1. Diffuse Light in Three Dimensions
2.1.2. Diffuse Light in Two Dimensions
2.2. Inverse Problems by an Iterative Scheme
Algorithm 1: Levenberg–Marquardt (LM) |
|
2.3. Inverse Problems by Markov Chain Monte Carlo
Algorithm 2: Two-temperature simulated annealing (SA) |
|
Algorithm 3: Hybrid |
|
2.4. TRS Measurements of a Polyurethane-Based Phantom
2.5. Numerical Phantom
3. Results
3.1. Determination of Optical Properties
3.2. Determination of Absorption Inhomogeneity
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boas, D.A.; Brooks, D.H.; Miller, E.L.; DiMarzio, C.A.; Kilmer, M.; Gaudette, R.J.; Zhang, Q. Imaging the body with diffuse optical tomography. IEEE Signal Process. Mag. 2001, 18, 57–75. [Google Scholar] [CrossRef]
- Hoshi, Y. Towards the next generation of near-infrared spectroscopy. Phil. Trans. R. Soc. A 2011, 369, 4425–4439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Lange, F.; Tachtsidis, I. Clinical brain monitoring with time domain NIRS: A review and future perspectives. Appl. Sci. 2019, 9, 1612. [Google Scholar] [CrossRef]
- Chance, B.; Zhuang, Z.; Unah, C.; Alter, C.; Lipton, L. Cognition-activated low frequency modulation of light absorption in human brain. Proc. Natl. Acad. Sci. USA 1993, 90, 3770–3774. [Google Scholar] [CrossRef]
- Hoshi, Y.; Tamura, M. Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man. Neurosci. Lett. 1993, 150, 5–8. [Google Scholar] [CrossRef]
- Kato, T.; Kamei, A.; Takashima, S.; Ozaki, T. Human visual cortical function during photic stimulate on monitoring by means of near-infrared spectroscopy. J. Cereb. Blood Flow Metab. 1993, 13, 516–520. [Google Scholar] [CrossRef]
- Villringer, A.; Plank, J.; Hock, C.; Schleikofer, L.; Dirnagl, U. Near-infrared spectroscopy (NIRS): A new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci. Lett. 1993, 154, 101–104. [Google Scholar] [CrossRef]
- Laidevant, A.; da Silva, A.; Berger, M.; Dinten, J.-M. Effects of the surface boundary on the determination of the optical properties of a turbid medium withtime-resolved reflectance. Appl. Opt. 2006, 45, 4756–4764. [Google Scholar] [CrossRef]
- Gibson, A.P.; Hebden, J.C.; Arridge, S.R. Recent advances in diffuse optical imaging. Phys. Med. Biol. 2005, 50, R1–R43. [Google Scholar] [CrossRef]
- Arridge, S.R. Methods in diffuse optical imaging. Philos. Trans. R. Soc. A 2011, 369, 4558–4576. [Google Scholar] [CrossRef] [Green Version]
- Arridge, S.R.; Schweiger, M. A gradient-based optimization scheme for optical tomography. Opt. Express 1998, 2, 213–226. [Google Scholar] [CrossRef]
- Choe, R.; Corlu, A.; Lee, K.; Durduran, T.; Konecky, S.D.; Grosicka-Koptyra, M.; Arridge, S.R.; Czerniecki, B.J.; Fraker, D.L.; DeMichele, A.; et al. Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI. Med. Phys. 2005, 32, 1128–1139. [Google Scholar] [CrossRef]
- Hebden, J.C.; Gibson, A.; Austin, T.; Yusof, R.M.; Everdell, N.; Delpy, D.T.; Arridge, S.R.; Meek, J.H.; Wyatt, J.S. Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography. Phys. Med. Biol. 2004, 49, 1117–1130. [Google Scholar] [CrossRef] [Green Version]
- Arridge, S.R.; Schweiger, M. Image reconstruction in optical tomography. Philos. Trans. R. Soc. Lond. B 1997, 352, 717–726. [Google Scholar] [CrossRef] [Green Version]
- Schweiger, M.; Arridge, S. The toast++ software suite for forward and inverse modeling in optical tomography. J. Biomed. Opt. 2014, 19, 040801. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, F.; Tanikawa, Y.; Homma, K.; Yamada, Y. Time-resolved diffuse optical tomographic imaging for the provision of both anatomical and functional information about biological tissue. Appl. Opt. 2005, 44, 1905–1916. [Google Scholar] [CrossRef]
- Arridge, S.R. Optical tomography in medical imaging. Inverse Probl. 1999, 15, R41–R93. [Google Scholar] [CrossRef] [Green Version]
- Arridge, S.R.; Schotland, J.C. Optical tomography: Forward and inverse problems. Inverse Probl. 2009, 25, 123010. [Google Scholar] [CrossRef]
- Arridge, S.R.; Kaipio, J.P.; Kolehmainen, V.; Schweiger, M.; Somersalo, E.; Tarvainen, T.; Vauhkonen, M. Approximation errors and model reduction with an application in optical diffusion tomography. Inverse Probl. 2006, 22, 175–195. [Google Scholar] [CrossRef] [Green Version]
- Bal, G.; Langmore, I.; Marzouk, Y. Bayesian inverse problems with monte carlo forward models. Inverse Probl. Imaging 2013, 7, 81–105. [Google Scholar]
- Langmore, I.; Davis, A.B.; Bal, G. Multipixel retrieval of structural and optical parameters in a 2-d scene with a path-recycling monte carlo forward model and a new bayesian inference engine. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2903–2919. [Google Scholar] [CrossRef]
- Bamett, A.H.; Culver, J.P.; Sorensen, A.G.; Dale, A.; Boas, D.A. Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging. Appl. Opt. 2003, 2003 42, 3095–3108. [Google Scholar]
- Groenhuis, R.A.J.; Ferwerda, H.A.; Ten Bosch, J.J. Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory. Appl. Opt. 1983, 22, 2456–2462. [Google Scholar] [CrossRef]
- Egan, W.G.; Hilgeman, T.W. Optical Properties of Inhomogeneous Materials; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Oxford University Press: London, UK, 1959. [Google Scholar]
- Yosida, K.; Ito, S. Functional Analysis and Differential Equations; Iwanami: Tokyo, Japan, 1976. (In Japanese) [Google Scholar]
- Hielscher, A.H.; Jacques, S.L.; Wang, L.; Tittel, F.K. The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues. Phys. Med. Biol. 1995, 40, 1957–1975. [Google Scholar] [CrossRef]
- Machida, M.; Nakamura, G. Born series for the photon diffusion equation perturbing the Robin boundary condition. arXiv 2017, arXiv:1706.04500. [Google Scholar]
- Ishimaru, A. Wave Propagation and Scattering in Random Media; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Fletcher, R. A Modified Marquardt Subroutine for Nonlinear Least Squares (Report AERE-R 6799); The Atomic Energy Research Establishment: Harwell, UK, 1971. [Google Scholar]
- Kaipio, J.; Somersalo, E. Statistical and Computational Inverse Problems; Springer: New York, NY, USA, 2005. [Google Scholar]
- Nakamura, G.; Potthast, R. Inverse Modeling; IOP Publishing: Bristol, UK, 2015. [Google Scholar]
- Iglesias, M.A.; Lin, K.; Stuart, A.M. Well-posed bayesian geometric inverse problems arising in subsurface flow. Inverse Probl. 2014, 30, 114001. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. Inference from iterative simulation using multiple sequences. Stat. Sci. 1992, 1992 7, 457–472. [Google Scholar] [CrossRef]
- Martinez, W.L.; Martinez, A.R. Computational Statistics Handbook with MATLAB; Chapman and Hall/CRC: London, UK, 2015. [Google Scholar]
- Tierney, L. Markov chains for exploring posterior distributions. Ann. Stat. 1994, 22, 1701–1762. [Google Scholar] [CrossRef]
- Haario, H.; Saksman, E.; Tamminen, J. An adaptive metropolis algorithm. Bernoulli 2001, 7, 223–242. [Google Scholar] [CrossRef]
- Haario, H.; Laine, M.; Mira, A.; Saksman, E. Dram: Efficient adaptive mcmc. Stat. Comput. 2006, 16, 339–354. [Google Scholar] [CrossRef]
- Christen, J.A.; Fox, C. Markov chain monte carlo using an approximation. J. Comput. Graph. Stat. 2005, 14, 795–810. [Google Scholar] [CrossRef]
- Efendiev, Y.; Hou, T.; Luo, W. Preconditioning markov chain monte carlo simulations using coarse-scale models. SIAM J. Sci. Comput. 2006, 28, 776–803. [Google Scholar] [CrossRef]
- Kadowaki, T.; Nishimori, H. Quantum annealing in the transverse ising model. Phys. Rev. E 1998, 58, 5355–5363. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
Case 1 (, ) | Case 2 (, ) | |
---|---|---|
initial values | (, ) | (, ) |
Algorithm 1 (LM) | (, ) | (, ) |
Algorithm 2 (SA) | (, ) | (, ) |
Algorithm 3 (hybrid) | (, ) | (, ) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Hoshi, Y.; Machida, M.; Nakamura, G. A Hybrid Inversion Scheme Combining Markov Chain Monte Carlo and Iterative Methods for Determining Optical Properties of Random Media. Appl. Sci. 2019, 9, 3500. https://doi.org/10.3390/app9173500
Jiang Y, Hoshi Y, Machida M, Nakamura G. A Hybrid Inversion Scheme Combining Markov Chain Monte Carlo and Iterative Methods for Determining Optical Properties of Random Media. Applied Sciences. 2019; 9(17):3500. https://doi.org/10.3390/app9173500
Chicago/Turabian StyleJiang, Yu, Yoko Hoshi, Manabu Machida, and Gen Nakamura. 2019. "A Hybrid Inversion Scheme Combining Markov Chain Monte Carlo and Iterative Methods for Determining Optical Properties of Random Media" Applied Sciences 9, no. 17: 3500. https://doi.org/10.3390/app9173500
APA StyleJiang, Y., Hoshi, Y., Machida, M., & Nakamura, G. (2019). A Hybrid Inversion Scheme Combining Markov Chain Monte Carlo and Iterative Methods for Determining Optical Properties of Random Media. Applied Sciences, 9(17), 3500. https://doi.org/10.3390/app9173500