Adaptive Bat Algorithm Optimization Strategy for Observation Matrix
Abstract
:Featured Application
Abstract
1. Introduction
2. Related Works
- Calculate the correlation coefficient between the sensing matrix () and residual projection, and select the maximum correlation coefficient atomic as updated support sets.
- Use the Schmidt orthogonalization processing for the sensing matrix to eliminate interference on subsequent atoms.
- Least-square method is used to update residuals and obtain the reconstructed signals.
3. Adaptive Bat Algorithm Optimizes Observation Matrix
3.1. Compress Sensing
3.2. The Search Methods of Adaptive Bat Algorithm
3.3. Observation Matrix Optimization Based on Adaptive Bat Algorithm
3.3.1. Population Initialization and Coding Strategy
3.3.2. Define Population Interval
3.4. The Design of Adaptive Bat Algorithm Optimal Observation Matrix
Algorithm 1: Adaptive Bat Algorithm |
Input: The bat’s loudness , flight frequency and pulse transmission frequency , the maximum iterations number is . Initialization parameters; While t < max Calculate the fitness value by Equation (6) and find the best individual; Select the optimization center and calculate the radius with Equation (7); Update new position of bats individual; if Update the velocity and position with Equations (4) and (5); else Individual escapes from the search center and randomly generates new positions; end (if) Local disturbance: For each individual, generate a random number ; if The position of the bat is disturbed near the optimal individual with Equation (9): else Calculate the fitness value of the new position with Equation (6); end (if) Generate random numbers for each bat individual; if and Accept new solution and update loudness and pulse frequency with Equations (10) and (11); else Update the global optimal solution with Equation (5); end (if) end (while) Output: the observation matrix and the optimal fitness value (minimum reconstruction error). |
Algorithm 2: Reconstruction Process |
Input: Original signal: , sparse transformation base: . Initialization: Generate column of random Gaussian distribution with size of dimension as the bat’s initialization velocity and position ; Select sparse transform base and sparse representation signal with Equation (1); Generate random Gaussian observation matrices as the initial velocity and position; Turn the position of each bat individual to a matrix of ; While t < max Compress observation original signal with matrix; Generate observation signals with Equation (2); The reconstructed signal is obtained by the OMP reconstruction algorithm (Algorithm 2); end (While) Output: The observation matrix and the optimal fitness value (minimum reconstruction error). |
3.5. The Flow Chart of Adaptive Bat Algorithm Optimal Observation Matrix
4. Experimental Simulation
4.1. Experimental Design
4.1.1. Comparison Algorithm
- Gaussian random observation matrix (Gaussian),
- Bernoulli random observation matrix (Bernoulli),
- Singular value decomposition and the average value of optimization random gaussian observation matrix [37] (SVD-M),
- Standard bat algorithm (BA) optimization random Gaussian observation matrix [36],
- Adaptive bat algorithm optimization the observation matrix (ABA).
4.1.2. Signal Test
4.1.3. Parameter Setting
4.2. Signal Reconstruction Experiment
4.2.1. Evaluation Index Design
4.2.2. Signal Reconstruction Experiment and Analysis
4.3. Analysis and Selection of Transformation Basis
4.3.1. Transform Base Setting
4.3.2. Evaluation Index Design
4.3.3. Selection of Transform Bases in Signal Reconstruction Experiments
4.3.4. Analysis of the Influence of Transformation Basis on ABA
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gilbert, A.C.; Guha, S.; Indyk, P.; Muthukrishnan, S.; Strauss, M. Near-optimal sparse Fourier representations via sampling. In Proceedings of the 34th ACM Symposium on Theory of Computing, Montreal, QC, Canada, 19–21 May 2002; pp. 152–161. [Google Scholar]
- Candes, E.; Romberg, J.; Tao, T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information. arXiv 2004, arXiv:0409186. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Bloom, W.R. Estimates for the Fourier transform. Math. Sci. 1985, 10, 65–81. [Google Scholar]
- Wang, Q.; Zhang, P.; Wang, H.; Yang, W.; Chen, Y. Survey of Measurement Matrix Construction in Compressed Sensing. Comput. Appl. 2017, 37, 188–196. [Google Scholar] [CrossRef]
- Candes, E.J.; Tao, T. Near-Optimal Signal Recovery from Random Projections: Universal Encoding Strategies. IEEE Trans. Inf. Theory 2004, 52, 5406–5425. [Google Scholar] [CrossRef]
- Donoho, D.L.; Tsaig, Y.; Drori, I.; Starck, J.L. Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 2012, 58, 1094–1121. [Google Scholar] [CrossRef]
- Fong, H.; Zhang, Q.; Wei, S. Image Reconstruction Method Based on Sub-gaussian Random Projection. Comput. Res. Dev. 2008, 45, 1402–1407. [Google Scholar]
- Candes, E.J. The Restricted Isometry Property and its Implications for Compressed Sensing. Comptes Rendus-Mathématique 2008, 346, 589–592. [Google Scholar] [CrossRef]
- Yin, W. Practical Compressive Sensing with Toeplitz and Circulant Matrices; SPIE-The International Society for Optical Engineering: Bellingham, WA, USA, 2010; p. 7744. [Google Scholar]
- Peng, Y.; He, B.; Lin, Y. Compressed Sensing Noise Signal Reconstruction Algorithm Based on Singular Value Decomposition. J. Instrum. 2012, 33, 2655–2660. [Google Scholar]
- Duarte-Carvajalino, J.M.; Sapiro, G. Learning to Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization. IEEE Trans. Image Process. 2009, 18, 1395–1408. [Google Scholar] [CrossRef]
- Abolghasemi, V.; Jarchi, D.; Sanei, S. A robust approach for optimization of the measurement matrix in Compressed Sensing. In International Workshop on Cognitive Information Processing; IEEE: Piscataway, NJ, USA, 2010; pp. 388–392. [Google Scholar]
- Lan, Y.; Wang, D.; Zheng, Q.; Zhai, M. Observation Matrix Optimization Based on Gradient Descent Method and QR Decomposition. Comput. Technol. Dev. 2017, 27, 190–194. [Google Scholar]
- Yu, Y.; Petropulu, A.P.; Poor, H.V. Measurement Matrix Design for Compressive Sensing–Based MIMO Radar. IEEE Trans. Signal Process. 2011, 59, 5338–5352. [Google Scholar] [CrossRef]
- Hoque, M.T.; Iqbal, S. Genetic algorithm-based improved sampling for protein structure prediction. Int. J. Bio-Inspired Comput. 2017, 9, 129–141. [Google Scholar] [CrossRef]
- Jie, W.; Jiangjun, Y. A high-efficient multi-deme genetic algorithm with better load-balance. Int. J. Comput. Sci. Math. 2018, 9, 240–246. [Google Scholar] [CrossRef]
- Cai, X.; Gao, X.Z.; Xue, Y. Improved bat algorithm with optimal forage strategy and random disturbance strategy. Int. J. Bio-Inspired Comput. 2016, 8, 205–214. [Google Scholar] [CrossRef]
- Cui, Z.; Li, F.; Zhang, W. Bat algorithm with principal component analysis. Int. J. Mach. Learn. Cybern. 2019, 10, 603–622. [Google Scholar] [CrossRef]
- Pooja, P.; Chaturvedi, P.; Kumar, A.; Tomar, A. A novel differential evolution approach for constraint optimization. Int. J.Bio-Inspired Comput. 2018, 12, 254–265. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, C.; Li, X.; Dai, G. An improved differential evolution algorithm based on suboptimal solution mutation. Int. J. Comput. Sci. Math. 2017, 8, 28–34. [Google Scholar] [CrossRef]
- Lv, L.; Fan, T.; Li, Q.; Sun, Z.; Xu, L. Object tracking with improved firefly algorithm. Int. J. Comput. Sci. Math. 2018, 9, 219–231. [Google Scholar] [CrossRef]
- Yaghoobi, T.; Esmaeili, E. An improved artificial bee colony algorithm for global numerical optimization. Int. J. Bio-Inspired Comput. 2017, 9, 251–258. [Google Scholar] [CrossRef]
- You, X.; Ma, Y.; Liu, Z. An improved artificial bee colony algorithm for solving parameter identification problems. Int. J. Comput. Sci. Math. 2017, 8, 570–579. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H.; Cui, Z.; Chen, J. Hybrid multi-objective cuckoo search with dynamical local search. Memetic Comput. 2018, 10, 199–208. [Google Scholar] [CrossRef]
- Cui, Z.; Sun, B.; Wang, G.; Xue, Y.; Chen, J. A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber-physical systems. J. Parallel Distrib. Comput. 2017, 10, 42–52. [Google Scholar] [CrossRef]
- Abdel-Baset, M.; Zhou, Y.; Ismail, M. An improved cuckoo search algorithm for integer programming problems. Int. J. Comput. Sci. Math. 2018, 9, 66–81. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, J.; Wang, Y.; Cao, Y.; Cai, X.; Zhang, W.; Chen, J. A pigeon-inspired optimization algorithm for many-objective optimization problems. Sci. China Inf. Sci. 2019, 62, 070212. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ke, L.; Ye, G.; Zhang, T. Ant colony optimization for the routing problem in the constellation network with node satellite constraint. Int. J. Bio-Inspired Comput. 2017, 10, 267–274. [Google Scholar] [CrossRef]
- Pérez-Delgado, M.L. An iterative method to improve the results of ant-tree algorithm applied to colour quantisation. Int. J. Bio-Inspired Comput. 2018, 12, 87–114. [Google Scholar] [CrossRef]
- Cai, X.; Wang, P.; Du, L.; Cui, Z.; Zhang, W.; Chen, J. Multi-objective 3-Dimensional DV-Hop Localization Algorithm with NSGA-II. IEEE Sens. J. 2019. [Google Scholar] [CrossRef]
- Wang, P.; Huang, J.; Cui, Z.; Xie, L.; Chen, J. A Gaussian Error Correction Multi-Objective Positioning Model with NSGA-II. Concurr. Comput. Pract. Exp. 2019. [Google Scholar] [CrossRef]
- Cui, Z.; Du, L.; Wang, P.; Cai, X.; Zhang, W. Malicious code detection based on CNNs and multi-objective algorithm. J. Parallel Distrib. Comput. 2019, 129, 50–58. [Google Scholar] [CrossRef]
- Cui, Z.; Chang, Y.; Zhang, J.; Cai, X.; Zhang, W. Improved NSGA-III with selection-and-elimination operator. Swarm Evol. Comput. 2019, 49, 23–33. [Google Scholar] [CrossRef]
- Wang, G.G.; Cai, X.; Cui, Z.; Min, G.; Chen, J. High Performance Computing for Cyber Physical Social Systems by Using Evolutionary Multi-Objective Optimization Algorithm; IEEE Transactions on Emerging Topics in Computing: Piscataway, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, F.; Cai, X.; Cui, Z.; Chang, Y.; Zhang, W.; Li, W. Privacy protection based on many-objective optimization algorithm. In Concurrency and Computation Practice and Experience; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Wang, P.; Xue, F.; Li, H.; Cui, Z.; Chen, J. A multi-objective DV-Hop localization algorithm based on NSGA-II in internet of things. Mathematics 2019, 7, 184. [Google Scholar] [CrossRef]
- Sadeghiram, S. Bacterial foraging optimisation algorithm, particle swarm optimisation and genetic algorithm: A comparative study. Int. J. Bio-Inspired Comput. 2017, 10, 275–282. [Google Scholar] [CrossRef]
- Cortés, P.; Muñuzuri, J.; Onieva, L.; Guadix, J. A discrete particle swarm optimisation algorithm to operate distributed energy generation networks efficiently. Int. J. Bio-Inspired Comput. 2018, 12, 226–235. [Google Scholar] [CrossRef]
- Arloff, W.; Schmitt, K.R.; Venstrom, L.J. A parameter estimation method for stiff ordinary differential equations using particle swarm optimization. Int. J. Comput. Sci. Math. 2018, 9, 419–432. [Google Scholar] [CrossRef]
- Zhang, J.; Jie, J.; Wang, W.; Xu, X. A hybrid particle swarm optimisation for multi-objective flexible job-shop scheduling problem with dual-resources constrained. Int. J. Comput. Sci. Math. 2017, 8, 526–532. [Google Scholar] [CrossRef]
- Cui, Z.; Cao, Y.; Cai, X.; Cai, J.; Chen, J. Optimal LEACH protocol with modified bat algorithm for big data sensing systems in Internet of Things. J. Parallel Distrib. Comput. 2019, 132, 217–229. [Google Scholar] [CrossRef]
- Wang, H.Q.; Yang, B.L.; Qin, A.H. An encoding and reconstructing method with robust transmission for 3D model topological data over wireless network. Int. J. Comput. Sci. Math. 2017, 8, 542–551. [Google Scholar] [CrossRef]
- Tripathi, A.; Saxena, N.; Mishra, K.K.; Misra, A.K. A nature inspired hybrid optimisation algorithm for dynamic environment with real parameter encoding. Int. J. Bio-Inspired Comput. 2017, 10, 24–32. [Google Scholar] [CrossRef]
- Cai, X.; Wang, H.; Cui, Z.; Cai, J.; Xue, Y.; Wang, L. Bat algorithm with triangle-flipping strategy for numerical optimization. Int. J. Mach. Learn. Cybern. 2018, 9, 199–215. [Google Scholar] [CrossRef]
- Ren, Y.; Sun, Y.; Jing, X.; Cui, Z.; Shi, Z. Adaptive Makeup Transfer via Bat Algorithm. Mathematics 2019, 7, 273. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, C.; Shi, Z. Observation Matrix Optimization Algorithm Based on Bat Algorithm. Control Decis. Mak. 2018, 33, 192–195. [Google Scholar]
- Fang, H.; Yang, H. Greedy algorithm and compressed sensing theory. J. Autom. 2011, 37, 1413–1421. [Google Scholar]
- Bi, H.; Zhao, C.; Liu, Y.; Li, N. Performance evaluation of greedy reconstruction algorithms in compressed sensing. In Proceedings of the 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI); IEEE: Piscataway, NJ, USA, 2017; pp. 1322–1327. [Google Scholar]
- Yang, A.Y.; Sastry, S.S.; Ganesh, A.; Ma, Y. Fast l1−minimization algorithms and an application in robust face recognition: A review. In IEEE International Conference on Image Processing; IEEE: Piscataway, NJ, USA, 2010; pp. 1849–1852. [Google Scholar]
- Zhao, H.; Chen, J.; Xu, S.; Wang, Y.; Qiao, Z. Compressive sensing for noisy solder joint imagery based on convex optimization. Solder. Surf. Mt. Technol. 2016, 28, 114–122. [Google Scholar] [CrossRef]
- Chartrand, R.; Yin, W. Iteratively reweighted algorithms for compressive sensing. In IEEE International Conference on Acoustics, Speech and Signal Processing; IEEE: Piscataway, NJ, USA, 2008; pp. 3869–3872. [Google Scholar]
- You, G.; Huang, Z.H.; Wang, Y. A Theoretical Perspective of Solving Phaseless Compressive Sensing via Its Nonconvex Relaxation. Inf. Sci. 2017, 11, 254–268. [Google Scholar] [CrossRef]
- Liu, F.; Lin, L.; Jiao, L.; Li, L.; Yang, S.; Hou, B.; Xu, J. Nonconvex compressed sensing by nature-inspired optimization algorithms. IEEE Trans. Cybern. 2015, 45, 1042–1053. [Google Scholar]
- Li, H.; Su, X.; Xu, Z.; Zhang, Q. MOEA/D with Iterative Thresholding Algorithm for Sparse Optimization Problems. In Parallel Problem Solving from Nature—PPSN XII; Springer: Berlin/Heidelberg, Germany, 2012; pp. 93–101. [Google Scholar]
- Hou, K. Research on Reconstruction Algorithm Based on Compressed Sensing; Chongqing University: Chongqing, China, 2013. [Google Scholar]
- Cai, T.T.; Wang, L. Orthogonal Matching Pursuit for Sparse Signal Recovery with Noise. IEEE Trans. Inf. Theory 2011, 57, 4680–4688. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Yang, X.S. Binary bat algorithm. Neural Comput. Appl. 2014, 25, 663–681. [Google Scholar] [CrossRef]
- Osaba, E.; Yang, X.S.; Diaz, F.; Lopez-Garcia, P.; Carballedo, R. An improved discrete bat algorithm for symmetric and asymmetric Traveling Salesman Problems. Eng. Appl. Artif. Intell. 2016, 48, 59–71. [Google Scholar] [CrossRef]
- Hua, X.; Ting, Z. Hybrid discrete bat algorithm for multi-objective flexible job shop scheduling. J. Mech. Eng. 2016, 52, 201–212. [Google Scholar]
- Liu, C.; Ye, C. Bat algorithm with Levy flight characteristics. J. Intell. Syst. 2013, 3, 240–246. [Google Scholar]
- Xie, J.; Zhou, Y.; Chen, H. A bat algorithm based on levy flight trajectory. Intell. Mode Artif. Intell. 2013, 26, 829–837. [Google Scholar]
- Wang, C.; Ma, M.; Shen, P. A New Improved Bat Algorithm for Global Optimization. Math. Appl. 2016, 29, 632–642. [Google Scholar] [CrossRef]
- Tsai, P.W.; Pan, J.S.; Liao, B.Y.; Tsai, M.J.; Istanda, V. Bat Algorithm Inspired Algorithm for Solving Numerical Optimization Problems. Appl. Mech. Mater. 2012, 148, 134–137. [Google Scholar] [CrossRef]
- Yang, X. Bat algorithm for multi-objective optimization. Int. J. Bio-Inspired Comput. 2012, 3, 267–274. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, C.; Zhao, R. Multi-objective bat algorithm based on decomposition. J. Agric. Mach. /Trans. Chin. Soc. Agric. Mach. 2015, 46, 316–324. [Google Scholar]
- Heraguemi, K.E.; Kamel, N.; Drias, H. Multi-objective Bat Algorithm for Mining Interesting Association Rules. Int. J. Bio-Inspired Comput. 2016, 11, 239. [Google Scholar] [CrossRef]
- He, D.J.; Jiang, P. Research on Fast Image Matching Method Based on Discrete Hartley Transform. Mod. Def. Technol. 2016, 44, 61–65. [Google Scholar]
- Wang, Q.; Li, J.; Shen, Y. A review of algorithms for constructing deterministic measurement matrix in compressed sensing. Electron. J. 2013, 41, 2041–2050. [Google Scholar]
- Yang, Z. Compressed Sensing Reconstruction Technology and Its Application in Image Fusion; Nanjing University of Posts and Telecommunications: Nanjing, China, 2014. [Google Scholar]
The Test of Sparse Signal: |
---|
Parameter | Value | Parameter | Value |
---|---|---|---|
signal length N | 256 | ||
compression rate | 0.3, 0.35, 0.4, 0.45, 0.5 | ||
sampling frequency Fs | 800 | ||
population size P | 100 |
Signal | Rate | Data | DHT | FFT |
---|---|---|---|---|
0.30 | 3.6916 × 10-15 | 3.1462 × 10−15 | ||
0.35 | 3.4521 × 10−15 | 3.1030 × 10−15 | ||
0.40 | 3.4700 × 10−15 | 3.1139 × 10−15 | ||
0.45 | 3.3844 × 10−15 | 3.0513 × 10−15 | ||
0.50 | 3.3120 × 10−15 | 3.0155 × 10−15 | ||
0.30 | 5.0519 × 10−14 | 4.6387 × 10−14 | ||
0.35 | 4.9979 × 10−14 | 4.4886 × 10−14 | ||
0.40 | 4.8152 × 10−14 | 4.3008 × 10−14 | ||
0.45 | 4.7886 × 10−14 | 4.2642 × 10−14 | ||
0.50 | 4.7102 × 10−14 | 4.1672 × 10−14 |
Signal | Rate | Data | DHT | FFT | ||
---|---|---|---|---|---|---|
Gaussian | ABA | Gaussian | ABA | |||
0.30 | 4.5714 × 10−14 | 3.6916 × 10−14 | 4.0586 × 10−15 | 3.1462 × 10−15 | ||
19.25% | – | 22.48% | – | |||
0.35 | 4.3217 × 10−14 | 3.4521 × 10−14 | 3.8985 × 10−15 | 3.1030 × 10−15 | ||
20.12% | – | 20.41% | – | |||
0.40 | 4.2001 × 10−14 | 3.4700 × 10−14 | 3.8786 × 10−15 | 3.1139 × 10−15 | ||
17.38% | – | 19.72% | – | |||
0.45 | 4.1711 × 10−14 | 3.3844 × 10−14 | 3.8565 × 10−15 | 3.0513 × 10−15 | ||
18.86% | – | 20.88% | – | |||
0.50 | 4.1014 × 10−14 | 3.3120 × 10−14 | 3.8174 × 10−15 | 3.0155 × 10−15 | ||
19.25% | – | 21.01% | – | |||
0.30 | 6.5552 × 10−14 | 5.0519 × 10−14 | 6.1340 × 10−15 | 4.6387 × 10−15 | ||
22.93% | – | 24.38% | – | |||
0.35 | 6.5499 × 10−14 | 4.9979 × 10−14 | 5.9468 × 10−15 | 4.4886 × 10−15 | ||
23.70% | – | 24.50% | – | |||
0.40 | 6.4900 × 10−14 | 4.8152 × 10−14 | 5.7716 × 10−15 | 4.3008 × 10−15 | ||
25.81% | – | 25.48% | – | |||
0.45 | 6.4718 × 10−14 | 4.7886 × 10−14 | 5.6797 × 10−15 | 4.2642 × 10−15 | ||
26.01% | – | 24.92% | – | |||
0.50 | 6.4152 × 10−14 | 4.7102 × 10−14 | 5.4878 × 10−15 | 4.1672 × 10−15 | ||
26.58% | – | 24.06% | – |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Z.; Zhang, C.; Zhao, Y.; Shi, Z. Adaptive Bat Algorithm Optimization Strategy for Observation Matrix. Appl. Sci. 2019, 9, 3008. https://doi.org/10.3390/app9153008
Cui Z, Zhang C, Zhao Y, Shi Z. Adaptive Bat Algorithm Optimization Strategy for Observation Matrix. Applied Sciences. 2019; 9(15):3008. https://doi.org/10.3390/app9153008
Chicago/Turabian StyleCui, Zhihua, Chunmei Zhang, Yaru Zhao, and Zhentao Shi. 2019. "Adaptive Bat Algorithm Optimization Strategy for Observation Matrix" Applied Sciences 9, no. 15: 3008. https://doi.org/10.3390/app9153008
APA StyleCui, Z., Zhang, C., Zhao, Y., & Shi, Z. (2019). Adaptive Bat Algorithm Optimization Strategy for Observation Matrix. Applied Sciences, 9(15), 3008. https://doi.org/10.3390/app9153008