Comparison of Various Factors Affected TID Tolerance in FinFET and Nanowire FET
Abstract
:1. Introduction
2. Simulation Methodology
2.1. Design Structure for TID Simulation
2.2. TID Simulation of Various Factors
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leroux, P.; Van Koeckhoven, W.; Verbeeck, J.; Van Uffelen, M.; Esqué, S.; Ranz, R.; Damiani, C.; Hamilton, D. Design of a MGy radiation tolerant resolver-to-digital convertor IC for remotely operated maintenance in harsh environments. Fusion Eng. Des. 2014, 89, 2314–2319. [Google Scholar] [CrossRef]
- Haddad, N.F.; Kelly, A.T.; Lawrence, R.K.; Li, B.; Rodgers, J.C.; Ross, J.F.; Warren, K.M.; Weller, R.A.; Mendenhall, M.H.; Reed, R.A. Incremental enhancement of SEU hardened 90 nm CMOS memory cell. IEEE Trans. Nucl. Sci. 2011, 58, 975–980. [Google Scholar] [CrossRef]
- Clark, L.T.; Mohr, K.C.; Holbert, K.E.; Yao, X.; Knudsen, J.; Shah, H. Optimizing radiation hard by design SRAM cells. IEEE Trans. Nucl. Sci. 2007, 54, 2028–2036. [Google Scholar] [CrossRef]
- Gatti, U.; Calligaro, C.; Pikhay, E.; Roizin, Y. Radiation-hardened techniques for CMOS flash ADC. In Proceedings of the IEEE International Conference on Electronics Circuits and Systems (ICECS), Marseille, France, 7–10 December 2014; pp. 1–4. [Google Scholar]
- Verbeeck, J.; Cao, Y.; Van Uffelen, M.; Casellas, L.M.; Damiani, C.; Morales, E.R.; Santana, R.R.; Meek, R.; Hais, B.; Hamilton, D.; et al. Qualification method for a 1 MGy-tolerant front-end chip designed in 65 nm CMOS for the read-out of remotely operated sensors and actuators during maintenance in ITER. Fusion Eng. Des. 2015, 96–97, 1002–1005. [Google Scholar] [CrossRef]
- Verbeeck, J.; Van Uffelen, M.; Steyaert, M.; Leroux, P. 17 bit 4.35 mW 1 kHz delta sigma ADC and 256-to-1 multiplexer for remote handling instrumentation equipment. Fusion Eng. Des. 2013, 88, 1942–1946. [Google Scholar] [CrossRef]
- Cao, Y.; Cock, W.D.; Steyaert, M.; Leroux, P. A 4.5 MGy TID-tolerant CMOS bandgap reference circuit using a dynamic base leakage compensation technique. IEEE Trans. Nucl. Sci. 2013, 60, 2819–2824. [Google Scholar] [CrossRef]
- Virmontois, C.; Goiffon, V.; Magnan, P.; Girard, S.; Inguimbert, C.; Petit, S.; Rolland, G.; Saint-Pé, O. Displacement damage effects due to neutron and proton irradiations on CMOS image sensors manufactured in deep submicron technology. IEEE Trans. Nucl. Sci. 2010, 57, 3101–3108. [Google Scholar] [CrossRef]
- Barnaby, H.J. Total-ionizing-dose effects in modern CMOS technologies. IEEE Trans. Nucl. Sci. 2006, 53, 3103–3121. [Google Scholar] [CrossRef]
- Martin, H.; Martin-Holgado, P.; Morilla, Y.; Entrena, L.; San-Millan, E. Total ionizing dose effects on a delay-based physical unclonable function implemented in FPGAs. Electronics 2018, 7, 163. [Google Scholar] [CrossRef]
- Seo, D.; Trang, L.D.; Han, J.W.; Kim, J.; Lee, S.; Chang, I.J. Total Ionizing Dose Effect on Ring Oscillator Frequency in 28nm FD-SOI Technology. IEEE Electron. Device Lett. 2018, 39, 1728–1731. [Google Scholar] [CrossRef]
- Zebrev, G. Static and Dynamic Oxide-Trapped-Charge-Induced Variability in Nanoscale CMOS Circuits. IEEE Trans. Electron Devices 2019, 66, 2483–2488. [Google Scholar] [CrossRef]
- Zhai, Y.; Mathew, L.; Rao, R.; Palard, M.; Chopra, J.S.; Ekerdt, G.; Register, L.F.; Banerjee, S.K. High-Performance Vertical Gate-All-Around Silicon Nanowire FET with High-k/Metal Gate. IEEE Trans. Electron Devices 2014, 61, 3896–3900. [Google Scholar] [CrossRef]
- Song, J.Y.; Choi, W.Y.; Park, J.H.; Lee, J.D.; Park, B.G. Design optimization of gate-all-around (GAA) MOSFETs. IEEE Trans. Nanotechnol. 2006, 5, 186–191. [Google Scholar] [CrossRef]
- Bangsaruntip, S.; Cohen, G.M.; Majumdar, A.; Sleight, J.W. Universality of Short-Channel Effects in Undoped-Body Silicon Nanowire MOSFETs. IEEE Electron Device Lett. 2010, 31, 903–905. [Google Scholar] [CrossRef]
- Ko, K.; Kang, M.; Jeon, J.; Shin, H. Compact Model Strategy of Metal-Gate Work-Function Variation for Ultrascaled FinFET and Vertical GAA FETs. IEEE Trans. Electron Devices 2019, 66, 1613–1615. [Google Scholar] [CrossRef]
- The International Technology Roadmap for Semiconductors (ITRS); Semiconductor Industry Association: Washington, DC, USA, 2015.
- Victory Device User’s Manual, Silvaco Version. Available online: https://www.silvaco.com/products/tcad/device_simulation/victory_device/victory_device.html (accessed on 26 January 2015).
- Klaassen, D.B.M. Physical modeling bipolar device simulation. In Simulation of Semiconductor Devices and Processes; Fichtner, W., Aemmer, D., Eds.; Springer Science and Business Media: New York, NY, USA, 1991; Volume 4, pp. 23–43. [Google Scholar]
- Klaassen, D.B.M. A unified mobility model for device simulation—I. Model equations and concentration dependence. Solid State Electron. 1992, 35, 953–959. [Google Scholar] [CrossRef]
- Klaassen, D.B.M. A unified mobility model for device simulation—II. Temperature dependence of carrier mobility and lifetime. Solid State Electron. 1992, 35, 961–967. [Google Scholar] [CrossRef]
- Klaassen, D.B.M.; Slotboom, J.W.; De Graaff, H.C. Unified apparent bandgap narrowing in n- and p- type silicon. Solid State Electron. 1992, 35, 125–129. [Google Scholar] [CrossRef]
- Hurkx, G.A.M.; Klaassen, D.B.M.; Knuvers, M.P.G. A new recombination model for device simulation including tunneling. IEEE Trans. Electron Devices 1992, 39, 331–338. [Google Scholar] [CrossRef]
- Kimpton, D.; Kerr, J. A Simple Trap-Detrap Model for Accurate Prediction of Radiation Induced Threshold Voltage Shifts in Radiation Tolerant Oxides for All Static or Time Variant Oxide Fields. Solid State Electron. 1994, 37, 153–158. [Google Scholar] [CrossRef]
- Cho, J.W. Sensor and Communication Network Technology for Harsh Environments in the Nuclear Power Plant; KAERI/AR-795/2008; IAEA International Nuclear Information System: Vienna, Austria, 2008; Volume 39, pp. 1–133. [Google Scholar]
- Oldham, T.R.; McLean, F.B. Total ionizing dose effects in MOS oxides and devices. IEEE Trans. Nucl. Sci. 2003, 50, 483–499. [Google Scholar] [CrossRef] [Green Version]
- Adell, P. Hydrogen Contamination and Its Correlation with Enhanced Low-Dose-Rate Sensitivity Nasa Electronic Parts and Packaging (Nepp) Program Office of Safety and Mission Assurance; National Aeronautics and Space Administration: Washington, DC, USA, 2012; pp. 1–62.
- Nam, J.; Kang, C.Y.; Kim, K.P.; Yeo, H.; Lee, B.J.; Seo, S.; Yang, J.W. Influence of Ionizing Radiation on Short-Channel Effects in Low-Doped Multi-Gate MOSFETs. IEEE Trans. Nucl. Sci. 2012, 59, 3021–3026. [Google Scholar]
- Kilchytska, V.; Alvarado, J.; Collaert, N.; Rooyakers, R.; Militaru, O.; Berger, G.; Flandre, D. Total-dose effects caused by high-energy neutrons and γ -rays in multiple-gate FETs. IEEE Trans. Nucl. Sci. 2010, 57, 7–13. [Google Scholar] [CrossRef]
Condition Factor | FinFET | 5ch-NW |
---|---|---|
S/D Doping | 1 × 1021 (cm−3) | 1 × 1021 (cm−3) |
Channel Doping | 1 × 1016 (cm−3) | 1 × 1016 (cm−3) |
EOT | 0.812 (nm) | 0.812 (nm) |
Tfin, Dnw/Lg | 6/12 (nm) | 6/12 (nm) |
Hfin, Hnw | 42 (nm) | 30 (nm) |
Total area (HfO2 + SiO2 + Silicon) | 489.5 (nm2) | 474.9 (nm2) |
Oxide area (HfO2 + SiO2) | 237.5 (nm2) | 333.6 (nm2) |
Parameter explanation | ||
Tfin: FinFET’s width | Dnw: 5ch-NW’s diameter | |
Lg: channel length | Hfin: FinFET’s height | |
Hnw: 5ch-NW’s total height |
VDD = 0.65 V | FinFET (VT) | 5ch-NW (VT) |
---|---|---|
Initial | 329 mV | 402 mV |
100 k (rad) | 325 mV | 402 mV |
1 M (rad) | 323 mV | 400 mV |
10 M (rad) | 312 mV | 388 mV |
100 M (rad) | 281 mV | 360 mV |
FinFET (ΔVT) | 5ch-NW (ΔVT) | |||
---|---|---|---|---|
VDD = 0.1 V | VDD = 0.65 V | VDD = 0.1 V | VDD = 0.65 V | |
100 k (rad) | 1 mV | 4 mV | 0 mV | 0 mV |
1 M (rad) | 3 mV | 6 mV | 2 mV | 2 mV |
5 M (rad) | 11 mV | 12 mV | 6 mV | 6 mV |
10 M (rad) | 17 mV | 17 mV | 14 mV | 14 mV |
FinFET (ΔVT) | 5ch-NW (ΔVT) | |||
---|---|---|---|---|
Channel doping | 1 × 1016 cm−3 | 1 × 1018 cm−3 | 1 × 1016 cm−3 | 1 × 1018 cm−3 |
Initial | 329 mV | 345 mV | 402 mV | 411 mV |
10 Mrad | 312 mV | 329 mV | 388 mV | 398 mV |
ΔVT (%) | 5.16% | 4.63% | 3.48% | 3.16% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Won, H.; Ham, I.; Jeong, Y.; Kang, M. Comparison of Various Factors Affected TID Tolerance in FinFET and Nanowire FET. Appl. Sci. 2019, 9, 3163. https://doi.org/10.3390/app9153163
Won H, Ham I, Jeong Y, Kang M. Comparison of Various Factors Affected TID Tolerance in FinFET and Nanowire FET. Applied Sciences. 2019; 9(15):3163. https://doi.org/10.3390/app9153163
Chicago/Turabian StyleWon, Hyeonjae, Ilsik Ham, Youngseok Jeong, and Myounggon Kang. 2019. "Comparison of Various Factors Affected TID Tolerance in FinFET and Nanowire FET" Applied Sciences 9, no. 15: 3163. https://doi.org/10.3390/app9153163
APA StyleWon, H., Ham, I., Jeong, Y., & Kang, M. (2019). Comparison of Various Factors Affected TID Tolerance in FinFET and Nanowire FET. Applied Sciences, 9(15), 3163. https://doi.org/10.3390/app9153163