Developmental Screening System for Patient Vibration Signals with Knee Disorder
Abstract
:1. Introduction
2. Methods
2.1. Experimental Design
2.2. Signal Capturing
2.3. Signal Measurement
2.4. Assessment of Recovery
3. Results and Discussion
3.1. Swing Cycle Analysis and Comparison
3.2. Wavelet Basis Function
3.3. Wavelet Coefficient Band Comparison
3.4. Swing Angles in Analyses of Sound Changes
3.5. Ligament after Recovery Assessment
4. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boden, B.P.; Dean, G.S.; Feagin, J.A., Jr.; Garrett, W.E., Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics 2000, 23, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Waldén, M.; Hägglund, M.; Magnusson, H.; Ekstrand, J. Anterior Cruciate Ligament Injury in Elite Football: A Prospective Three-cohort Study. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Malinzak, R.A.; Colby, S.M.; Kirkendall, D.T.; Yu, B.; Garrett, W.E. A Comparison of Knee Joint Motion Patterns between Men and Women in Selected Athletic Tasks. Clin. Biomech. 2001, 16, 435–445. [Google Scholar] [CrossRef]
- Zaffagnini, S.; Grassi, A.; Marcheggiani Muccioli, G.M.; Tsapralis, K.; Ricci, M.; Bragonzoni, L.; Della Villa, S.; Marcacci, M. Return to sport after anterior cruciate ligament reconstruction in professional soccer players. Knee 2014, 3, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Malanga, G.A.; Andrus, S.; Nadler, S.F.; McLean, J. Physical Examination of the Knee: A Review of the Original Test Description and Scientific Validity of Common Orthopedic Tests. Arch. Phys. Med. Rehabil. 2003, 84, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Boni, D.M.; Herriott, G.E. Hamstring tendon graft for anterior cruciate ligament reconstruction. AORN J. 2002, 76, 610–615. [Google Scholar] [CrossRef]
- Lephart, S.M.; Perrin, D.H.; Fu, F.H.; Gieck, J.H.; McCue, F.C.; Irrgang, J.J. Relationship Between Selected Physical Characteristics and Functional Capacity in the Anterior Curciate Ligament-Insufficient Athlete. J. Orthop. Sports Phys. Ther. 1992, 16, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Garrett, W.E. Mechanisms of non-contact ACL Injuries. Br. J. Sports Med. 2007, 47, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Scanlan, S.F.; Chaudhari, A.M.; Dyrby, C.O.; Andriacchi, T.P. Differences in tibial rotation during walking in ACL reconstructed and healthy contralateral knees. J. Biomech. 2010, 43, 1817–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, K.E.; Feller, J.A. The Knee Adduction Moment in Hamstring and Patellar Tendon Anterior Cruciate Ligament Reconstructed knees. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 2214–2219. [Google Scholar] [CrossRef] [PubMed]
- Zabala, M.E.; Favre, J.; Scanlan, S.F.; Donahue, J.; Andriacchi, T.P. Three-dimensional Knee Moments of ACL Reconstructed and Control Subjects during Gait, Stair Ascent, and Stair Descent. J. Biomech. 2013, 46, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Akhpashev, A.A.; Novikova, L.V.; Agzamov, D.S.; Orudzhev, F.K. The isokinetic evaluation of the knee joint function following the autoplastic correction of its anterior cross-shaped ligament. Vopr. Kurortol. Fizioter. Lech. Fiz. Kult. 2016, 93, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Drapsin, M.; Lukac, D.; Rasovic, P.; Drid, P.; Klasnja, A.; Lalic, I. Isokinetic profile of subjects with the ruptured anterior cruciated ligament. Vojnosanit. Pregl. 2016, 73, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Jacopetti, M.; Pasquini, A.; Costantino, C. Evaluation of strength muscle recovery with isokinetic, squat jump and stiffness tests in athletes with ACL reconstruction: A case control study. Acta Biomed. 2016, 87, 76–80. [Google Scholar] [PubMed]
- Czaplicki, A.; Kuniszyk-Jóźkowiak, W.; Jaszczuk, J.; Jarocka, M.; Walawski, J. Using the discrete wavelet transform in assessing the effectiveness of rehabilitation in patients after ACL reconstruction. Acta Bioeng. Biomech. 2017, 19, 139–146. [Google Scholar] [PubMed]
- Berschin, G.; Sommer, B.; Behrens, A.; Sommer, H.M. Whole Body Vibration Exercise Protocol versus a Standard Exercise Protocol after ACL Reconstruction: A Clinical Randomized Controlled Trial with Short Term Follow-Up. J. Sports Sci. Med. 2014, 13, 580–589. [Google Scholar] [PubMed]
- Boer, B.C.; Hoogeslag, R.A.G.; Brouwer, R.W.; Demmer, A.; Huis, R.M. Self-reported functional recovery after reconstruction versus repair in acute anterior cruciate ligament rupture (ROTOR): A randomized controlled clinical trial. BMC Musculoskelet. Disord. 2018, 19, 127. [Google Scholar] [CrossRef] [PubMed]
- Eraslan, A.; Ulkar, B. Glucosamine supplementation after anterior cruciate ligament reconstruction in athletes: A randomized placebo-controlled trial. Res. Sports Med. 2015, 23, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Fan, Y.; Sun, H. Clinical Study of Internal Tension-Relieving Technique in Arthroscopic Assisted Anterior Cruciate Ligament Reconstruction. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2016, 30, 138–142. [Google Scholar] [PubMed]
- Aliyev, R. Additive Effects of Deep Oscillation in Rehabilitation after Anterior Cruciate Ligament Reconstruction. Physikalische Medizin Rehabilitationsmedizin Kurortmedizin 2014, 24, 183–190. [Google Scholar]
- Ogrodzka-Ciechanowicz, K.; Czechowska, D.; Chwala, W.; Slusarski, J.; Gadek, A. Stabilometric indicators as an element of verifying rehabilitation of patients before and after reconstruction of anterior cruciate ligament. Acta Bioeng. Biomech. 2018, 20, 101–107. [Google Scholar] [PubMed]
- Mu, T.; Nandi, A.K.; Rangayyan, R.M. Strict 2-surface Proximal Classification of Knee-joint Vibroarthrographic Signals. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 4911–4914. [Google Scholar]
- Rangayyan, R.M.; Wu, Y. Analysis of Vibroarthrographic Signals with Features Related to Signal Variability and Radial-basis Functions. Ann. Biomed. Eng. 2009, 37, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Umapathy, K.; Krishnan, S. Modified Local Discriminant bases Algorithm and Its Application in Analysis of Human Knee Joint Vibration Signals. IEEE Trans. Biomed. Eng. 2006, 3, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Seo, J.H.; Song, C.G. An Acoustical Evaluation of Knee Sound for Non-invasive Screening and Early Detection of Articular Pathology. J. Med. Syst. 2012, 36, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Cai, S.; Zheng, F.; Wu, Y.; Liu, K.; Wu, M.; Zou, Q.; Chen, J. Representation of fluctuation features in pathological knee joint vibroarthrographic signals using kernel density modeling method. Med. Eng. Phys. 2014, 36, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Tashman, S.; Collon, D.; Anderson, K.; Kolowich, P.; Anderst, W. Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am. J. Sports Med. 2004, 32, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Rangayyan, R.M.; Wu, Y. Analysis of Knee-Joint Vibroarthrographic Signals Using Statistical Measures. In Proceedings of the 20th IEEE International Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 20–22 June 2007; pp. 377–382. [Google Scholar]
- Chi, S.W. Assess Recovery for Postoperative Ligament by Detection of Knee Sound Signals Based on Wavelet Coefficient. Master’s Thesis, National Taipei University of Technology, Taipei, Taiwan, 2015. [Google Scholar]
- Chiang, Y.T.; Lu, C.H.; Tuan, C.C.; Lee, T.F.; Huang, Y.C.; Chen, M.C. Non-invasive Detection of Sound Signals for Diagnosis of Ligament Injuries around Knee based on Mel-frequency Cepstrum. In Proceedings of the 8th International Conference on Advanced Information Technologies, Taichung, Taiwan, 18–19 April 2014; pp. 1940–1949. [Google Scholar]
- Chiang, Y.T. Non-invasive Detection of Knee Sound Signals for Ligament Diagnosis Based on Mel-Frequency Cepstrum. Master’s Thesis, National Taipei University of Technology, Taipei, Taiwan, 2014. [Google Scholar]
- Baczkowicz, D.; Majorczyk, E. Joint motion quality in vibroacoustic signal analysis for patients with patellofemoral joint disorders. BMC Musculoskelet. Disord. 2014, 15, 426. [Google Scholar] [CrossRef] [PubMed]
- Shieh, C.S.; Tseng, C.D.; Chang, L.Y.; Lin, W.C.; Wu, L.F.; Wang, H.Y.; Chao, P.J.; Chiu, C.L.; Lee, T.F. Synthesis of vibroarthrographic signals in knee osteoarthritis diagnosis training. BMC Res. Notes 2016, 9, 352. [Google Scholar] [CrossRef] [PubMed]
- Teague, C.N.; Hersek, S.; Töreyin, H.; Millard-Stafford, M.L.; Jones, M.L.; Kogler, G.F.; Sawka, M.N.; Inan, O.T. Novel Methods for Sensing Acoustical Emissions From the Knee for Wearable Joint Health Assessment. IEEE Trans. Biomed. Eng. 2016, 63, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Carey, N. Establishing Pedestrian Walking Speeds. Project Report, Portland State University, ITE Student Chapter. 2005. Available online: https://www.westernite.org/datacollectionfund/2005/psu_ped_summary.pdf (accessed on 2 October 2014).
Test Point of Medial Collateral Ligament (TPMCL) | ||||||||
---|---|---|---|---|---|---|---|---|
Bands (Hz) | 4K~2K | 2K~1K | 1K~500 | 500~250 | 250~125 | 125~62.5 | 62.5~31.25 | |
Control group | 22.5 ± 23.6 | 24.5 ± 24.7 | 29.2 ± 23.8 | 33.5±24.6 | 12.7 ± 6.5 | 5.6 ± 1.6 | 4.5 ± 2.2 | |
Experimental group | Bef. Surgery 1 | 4.2 ± 2.6 | 5.2 ± 2.9 | 5.3 ± 3.3 | 7.3 ± 4.4 | 11.1 ± 7.9 | 3.5 ± 2.1 | 2.4 ± 1.2 |
Diff. with C.G. 2 | −81.46% | −78.72% | −81.74% | −78.31% | −12.24% | −36.43% | −45.55% | |
Aft. Surg. 1m 3 | 5.6 ± 2.6 | 7.8 ± 3.5 | 9.5 ± 4.2 | 14 ± 6.3 | 19.8 ± 8.9 | 6.9 ± 3.2 | 4.2 ± 1.6 | |
Diff. with C.G. | −75.21% | −68.30% | −67.49% | −58.11% | 56.02% | 23.67% | −6.58% | |
Aft. Surg. 2m | 7.8 ± 3.5 | 11.2 ± 4.4 | 13.5 ± 4 | 19.6 ± 6.1 | 34.2 ± 29.8 | 10 ± 3.2 | 4.9 ± 1.6 | |
Diff. BEF. Sur. 4 | 86.66% | 115.47% | 152.20% | 169.43% | 207.75% | 182.84% | 101.51% | |
Aft. Surg. 3m | 8.2 ± 1.4 | 12.4 ± 2.4 | 16.4 ± 3.8 | 24.2 ± 5.3 | 34 ± 7.4 | 10.9 ± 2.6 | 4.8 ± 2 | |
Diff. BEF. Sur. | 95.36% | 137.69% | 206.97% | 232.85% | 206.20% | 208.35% | 95.76% | |
Aft. Surg. 6m | 3 ± 1.5 | 4.6 ± 2.6 | 4.9 ± 3.4 | 8.1 ± 4.6 | 12.2 ± 7.2 | 5 ± 4.1 | 1.9 ± 1.9 | |
Diff. BEF. Sur. | −27.28% | −12.23% | −7.84% | 11.79% | 9.75% | 40.56% | −20.88% | |
Aft. Surg. 12m | 7.5 ± 9.7 | 11.5 ± 15.1 | 12.7 ± 16.7 | 23.3 ± 30.7 | 32.9 ± 44 | 12.9 ± 19 | 5 ± 11.9 | |
Diff. BEF. Sur. | 79.13% | 120.64% | 137.74% | 220.90% | 196.47% | 265.03% | 104.36% |
Test Point of Anterior Cruciate Ligament (TPACL) | ||||||||
---|---|---|---|---|---|---|---|---|
Bands (Hz) | 4K~2K | 2K~1K | 1K~500 | 500~250 | 250~125 | 125~62.5 | 62.5~31.25 | |
Control group | 10.4 ± 6.7 | 11.4 ± 5.9 | 13.1 ± 6.5 | 12.4 ± 5.1 | 9.9 ± 5.9 | 8.4 ± 3.7 | 6.8 ± 2.5 | |
Experimental group | Bef. Surgery | 24.2 ± 14.2 | 35.9 ± 21.9 | 46.6 ± 30.6 | 59.9 ± 38.7 | 88.3 ± 47.9 | 48.4 ± 27.8 | 46.9 ± 27.6 |
Diff. with C.G. 1 | 132.16% | 216.38% | 256.48% | 384.06% | 793.29% | 475.30% | 594.54% | |
Aft. Surg. 1m 3 | 16.2 ± 7.9 | 24.1 ± 12 | 31.8 ± 15.8 | 42.1 ± 17.8 | 61.6 ± 24.6 | 34.4 ± 14.1 | 34.9 ± 19.1 | |
Diff. with C.G. | 55.36% | 112.33% | 143.08% | 239.72% | 523.18% | 309.67% | 416.08% | |
Aft. Surg. 2m | 24.1 ± 13.8 | 35.2 ± 21.4 | 47.3 ± 29.3 | 67.5 ± 42.5 | 96.4 ± 60.5 | 54.7 ± 40.1 | 40.5 ± 28 | |
Diff. BEF. Sur. 3 | −0.02% | −2.16% | 1.41% | 12.61% | 9.17% | 13.03% | −13.57% | |
Aft. Surg. 3m | 26.8 ± 12.1 | 38.1 ± 20.1 | 48.4 ± 26 | 73.6 ± 35.7 | 104 ± 49.3 | 52.2 ± 21.9 | 40.5 ± 15.2 | |
Diff. BEF. Sur. | 10.78% | 6.09% | 3.94% | 22.84% | 17.78% | 7.87% | −13.70% | |
Aft. Surg. 6m | 19.4 ± 12.1 | 28.7 ± 17.8 | 31 ± 21.8 | 56 ± 38.9 | 72.5 ± 53.1 | 38.8 ± 37.4 | 22.3 ± 22.4 | |
Diff. BEF. Sur. | −19.77% | −20.26% | −33.43% | −6.47% | −17.86% | −19.81% | −52.44% | |
Aft. Surg. 12m | 9.6 ± 7.1 | 14.3 ± 10.8 | 15.4 ± 11.9 | 27 ± 18.6 | 37.7 ± 25.8 | 17.4 ± 13.7 | 10 ± 14.9 | |
Diff. BEF. Sur. | −60.42% | −60.30% | −66.96% | −55.00% | −57.29% | −64.07% | −78.64% |
Test Point of Lateral Collateral Ligament (TPLCL) | ||||||||
---|---|---|---|---|---|---|---|---|
Bands (Hz) | 4K~2K | 2K~1K | 1K~500 | 500~250 | 250~125 | 125~62.5 | 62.5~31.25 | |
Control group | 8.2 ± 6.9 | 8.8 ± 8.2 | 9.6 ± 12.3 | 13.8 ± 18.7 | 6.3 ± 5.9 | 3.7 ± 3 | 3.4 ± 2.5 | |
Experimental group | Bef. Surgery | 4.8 ± 5.2 | 5.9 ± 5.6 | 6.7 ± 6.7 | 8.4 ± 8.5 | 13.1 ± 11.3 | 6.7 ± 6.1 | 7.8 ± 16.1 |
Diff. with C.G. 1 | −41.21% | −33.69% | −29.35% | −39.41% | 107.87% | 78.90% | 131.25% | |
Aft. Surg. 1m 3 | 6.3 ± 4.4 | 8.5 ± 5.5 | 10.3 ± 5.5 | 15.4 ± 9.6 | 21.8 ± 14.1 | 9 ± 8 | 6.1 ± 7.4 | |
Diff. with C.G. | −24.01% | −3.56% | 8.01% | 11.22% | 247.68% | 139.69% | 82.65% | |
Aft. Surg. 2m | 6.7 ± 4.2 | 9.9 ± 6.3 | 13.8 ± 8.5 | 20.7 ± 13.8 | 36.4 ± 33.7 | 11 ± 8.3 | 4.6 ± 3.8 | |
Diff. BEF. Sur. 3 | 38.86% | 68.58% | 103.97% | 147.39% | 178.41% | 65.04% | −41.24% | |
Aft. Surg. 3m | 8.7 ± 2.8 | 12.6 ± 3.7 | 16 ± 5.8 | 23.3 ± 7.7 | 32.9 ± 11 | 11.8 ± 4.3 | 5.7 ± 3 | |
Diff. BEF. Sur. | 79.74% | 115.40% | 137.17% | 178.67% | 152.11% | 76.36% | −26.75% | |
Aft. Surg. 6m | −35.30% | −8.60% | −15.29% | 3.97% | 227.26% | 107.02% | −10.69% | |
Diff. BEF. Sur. | 5.4 ± 3 | 7.9 ± 4.5 | 8.7 ± 5.5 | 15.3 ± 10.1 | 22.2 ± 13.7 | 9.4 ± 6.8 | 3.7 ± 5.8 | |
Aft. Surg. 12m | −34.87% | −10.66% | −8.77% | 10.76% | 253.98% | 151.18% | 10.67% | |
Diff. BEF. Sur. | 8.2 ± 6.9 | 8.8 ± 8.2 | 9.6 ± 12.3 | 13.8 ± 18.7 | 6.3 ± 5.9 | 3.7 ± 3 | 3.4 ± 2.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuan, C.-C.; Lu, C.-H.; Wu, Y.-C.; Chen, M.-C.; Chi, S.-W.; Lee, T.-F.; Yeh, W.-L. Developmental Screening System for Patient Vibration Signals with Knee Disorder. Appl. Sci. 2019, 9, 908. https://doi.org/10.3390/app9050908
Tuan C-C, Lu C-H, Wu Y-C, Chen M-C, Chi S-W, Lee T-F, Yeh W-L. Developmental Screening System for Patient Vibration Signals with Knee Disorder. Applied Sciences. 2019; 9(5):908. https://doi.org/10.3390/app9050908
Chicago/Turabian StyleTuan, Chiu-Ching, Chi-Heng Lu, Yi-Chao Wu, Mei-Chuan Chen, Sung-Wei Chi, Tsair-Fwu Lee, and Wen-Ling Yeh. 2019. "Developmental Screening System for Patient Vibration Signals with Knee Disorder" Applied Sciences 9, no. 5: 908. https://doi.org/10.3390/app9050908
APA StyleTuan, C. -C., Lu, C. -H., Wu, Y. -C., Chen, M. -C., Chi, S. -W., Lee, T. -F., & Yeh, W. -L. (2019). Developmental Screening System for Patient Vibration Signals with Knee Disorder. Applied Sciences, 9(5), 908. https://doi.org/10.3390/app9050908