Extended Reality for the Clinical, Affective, and Social Neurosciences
Abstract
:1. Introduction
2. Clinical Extended Reality (XR) for Assessment and Training in Clinical Neuroscience
2.1. Assessments: Simulation-Based Neuropsychological Assessments
2.2. Treatment: Presence-Inducing Embodied Experiences
2.2.1. Clinical XR: Structuring Multisensory Bodily Contents
2.2.2. Clinical XR: Augmenting Multisensory Bodily Contents
2.2.3. Clinical XR: Replacing Multisensory Bodily Contents
3. Affective Extended Reality (XR), Affective Computing, and Affective Neuroscience
Affective Interactions Using VR: The Link between Presence and Emotions
4. Social Extended Reality and Social Neuroscience
4.1. Social XR
4.2. Social XR with Virtual Humans
4.3. Presence and Co-Presence (Key Concepts/Theories)
- Other’s presence: the capacity for recognizing another’s motor intentions. This allows for intentional recognition and imitation of another. The better the user is at recognizing (within the sensorial flow) another’s motor intention, the better able is the user to carry out intentions that enhance survival;
- Interactive presence: the capability for recognition of motor and proximal intentions. This permits the user to identify the intension of others toward the user. The better the user is competent in recognizing (within sensorial flow) the motor and/or proximal intentions of others (direct towards the user), the greater the chances of successfully carrying out social actions that enhance survival;
- Shared presence: the capacity for recognizing motor, proximal, and distal intentions. This allows the user to identify when another’s intentions correspond to the user’s intentions. The better the user is at recognizing (within sensorial flow) when another’s intentions are the same as the user’s, the better the user will be at successfully initiating and maintaining collective intentions that call for a form of cooperation beyond mere coordination. This involves mutual understanding of the intentions of the others and increases the user’s chances of survival.
5. Potential Limitations of Social XR Platforms
5.1. Simulator Sickness
5.2. Depersonalization and Derealization
6. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Abbott, E.A. Flatland: A Romance of Many Dimensions: With Illus. by the Author, a Square; Dover Publications: Mineola, NY, USA, 1952. [Google Scholar]
- Jolly, E.; Chang, L.J. The Flatland Fallacy: Moving Beyond Low-Dimensional Thinking. Top. Cogn. Sci. 2019, 11, 433–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchamp, M.H. Neuropsychology’s social landscape: Common ground with social neuroscience. Neuropsychology 2017, 31, 981–1002. [Google Scholar] [CrossRef] [PubMed]
- Genon, S.; Reid, A.; Langner, R.; Amunts, K.; Eickhoff, S.B. How to Characterize the Function of a Brain Region. Trends Cogn. Sci. 2018, 22, 350–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, F.S.; Riley, W.T. NIHs transformative opportunities for the behavioral and social sciences. Sci. Transl. Med. 2016, 8, 366ed14. [Google Scholar] [CrossRef]
- Wilms, M.; Schilbach, L.; Pfeiffer, U.; Bente, G.; Fink, G.R.; Vogeley, K. It’s in your eyes—Using gaze-contingent stimuli to create truly interactive paradigms for social cognitive and affective neuroscience. Soc. Cogn. Affect. Neurosci. 2010, 5, 98–107. [Google Scholar] [CrossRef]
- Zaki, J.; Ochsner, K. The Need for a Cognitive Neuroscience of Naturalistic Social Cognition. Ann. N. Y. Acad. Sci. 2009, 1167, 16–30. [Google Scholar] [CrossRef]
- Kennedy, D.P.; Adolphs, R. The social brain in psychiatric and neurological disorders. Trends Cogn. Sci. 2012, 16, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Price, C. The evolution of cognitive models: From neuropsychology to neuroimaging and back. Cortex 2018, 107, 37–49. [Google Scholar] [CrossRef]
- Bohil, C.J.; Alicea, B.; Biocca, F.A. Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 2011, 12, 752–762. [Google Scholar] [CrossRef]
- Parsons, T.D. Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective and Social Neurosciences. Front. Hum. Neurosci. 2015, 9, 660. [Google Scholar] [CrossRef] [Green Version]
- Burgess, P.W.; Alderman, N.; Forbes, C.; Costello, A.; Coates, L.A.; Dawson, D.R.; Anderson, N.D.; Gilbert, S.J.; Dumontheil, I.; Channon, S. The case for the development and use of “ecologically valid” measures of executive function in experimental and clinical neuropsychology. J. Int. Neuropsychol. Soc. 2006, 12, 194–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsey, C.; Schmitter-Edgecombe, M. Applications of Technology in Neuropsychological Assessment. Clin. Neuropsychol. 2013, 27, 1328–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, T.D.; Carlew, A.R.; Magtoto, J.; Stonecipher, K. The potential of function-led virtual environments for ecologically valid measures of executive function in experimental and clinical neuropsychology. Neuropsychol. Rehabil. 2017, 27, 777–807. [Google Scholar] [CrossRef] [PubMed]
- Renison, B.; Ponsford, J.L.; Testa, R.; Richardson, B.; Brownfield, K. The Ecological and Construct Validity of a Newly Developed Measure of Executive Function: The Virtual Library Task. J. Int. Neuropsychol. Soc. 2012, 18, 440–450. [Google Scholar] [CrossRef]
- Neguţ, A.; Matu, S.-A.; Sava, F.A.; David, D.O. Virtual reality measures in neuropsychological assessment: A meta-analytic review. Clin. Neuropsychol. 2016, 30, 165–184. [Google Scholar] [CrossRef]
- Neguţ, A.; Matu, S.-A.; Sava, F.A.; David, D. Task difficulty of virtual reality-based assessment tools compared to classical paper-and-pencil or computerized measures: A meta-analytic approach. Comput. Hum. Behav. 2016, 54, 414–424. [Google Scholar] [CrossRef]
- Parsons, T.D.; Duffield, T.; Asbee, J. A Comparison of Virtual Reality Classroom Continuous Performance Tests to Traditional Continuous Performance Tests in Delineating ADHD: A Meta-Analysis. Neuropsychol. Rev. 2019, 29, 338–356. [Google Scholar] [CrossRef]
- Freeman, D.; Reeve, S.; Robinson, A.; Ehlers, A.; Clark, D.; Spanlang, B.; Slater, M. Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychol. Med. 2017, 47, 2393–2400. [Google Scholar] [CrossRef]
- Kaplan, A.D.; Cruit, J.; Endsley, M.R.; Beers, S.M.; Sawyer, B.D.; Hancock, P.A. The Effects of Virtual Reality, Augmented Reality, and Mixed Reality as Training Enhancement Methods: A Meta-Analysis. Hum. Factors J. Hum. Factors Ergon. Soc. 2020, 24. [Google Scholar] [CrossRef]
- Lindner, P. Better, Virtually: The Past, Present, and Future of Virtual Reality Cognitive Behavior Therapy. Int. J. Cogn. Ther. 2020, 1–24. [Google Scholar] [CrossRef]
- Reger, G.M.; Holloway, K.M.; Candy, C.; Rothbaum, B.O.; Difede, J.; Rizzo, A.; Gahm, G.A. Effectiveness of virtual reality exposure therapy for active duty soldiers in a military mental health clinic. J. Trauma. Stress 2011, 24, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Reger, G.M.; Koenen-Woods, P.; Zetocha, K.; Smolenski, D.J.; Holloway, K.M.; Rothbaum, B.O.; Difede, J.; Rizzo, A.A.; Edwards-Stewart, A.; Skopp, N.A.; et al. Randomized controlled trial of prolonged exposure using imaginal exposure vs. virtual reality exposure in active duty soldiers with deployment-related posttraumatic stress disorder (PTSD). J. Consult. Clin. Psychol. 2016, 84, 946–959. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Parsons, T.D.; Lange, B.; Kenny, P.; Buckwalter, J.G.; Rothbaum, B.; Difede, J.; Frazier, J.; Newman, B.; Williams, J.; et al. Virtual Reality Goes to War: A Brief Review of the Future of Military Behavioral Healthcare. J. Clin. Psychol. Med. Settings 2011, 18, 176–187. [Google Scholar] [CrossRef]
- Botella, C.; Fernández-Álvarez, J.; Guillén, V.; García-Palacios, A.; Baños, R. Recent Progress in Virtual Reality Exposure Therapy for Phobias: A Systematic Review. Curr. Psychiatry Rep. 2017, 19, 42. [Google Scholar] [CrossRef]
- Giglioli, I.A.C.; Pallavicini, F.; Pedroli, E.; Serino, S.; Riva, G. Augmented Reality: A Brand New Challenge for the Assessment and Treatment of Psychological Disorders. Comput. Math. Methods Med. 2015, 2015, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, M.B.; Emmelkamp, P.M. Virtual reality exposure therapy for anxiety disorders: A meta-analysis. J. Anxiety Disord. 2008, 22, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.D.; Rizzo, A.A. Affective outcomes of virtual reality exposure therapy for anxiety and specific phobias: A meta-analysis. J. Behav. Ther. Exp. Psychiatry 2008, 39, 250–261. [Google Scholar] [CrossRef]
- Opriş, D.; Pintea, S.; García-Palacios, A.; Botella, C.; Szamosközi, Ş.; David, D. Virtual reality exposure therapy in anxiety disorders: A quantitative meta-analysis. Depress. Anxiety 2012, 29, 85–93. [Google Scholar] [CrossRef]
- Carl, E.; Stein, A.T.; Levihn-Coon, A.; Pogue, J.R.; Rothbaum, B.; Emmelkamp, P.; Asmundson, G.J.; Carlbring, P.; Powers, M.B. Virtual reality exposure therapy for anxiety and related disorders: A meta-analysis of randomized controlled trials. J. Anxiety Disord. 2019, 61, 27–36. [Google Scholar] [CrossRef]
- Slater, M. Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3549–3557. [Google Scholar] [CrossRef] [Green Version]
- Slater, M. Immersion and the illusion of presence in virtual reality. Br. J. Psychol. 2018, 109, 431–433. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Wiederhold, B.K.; Mantovani, F. Neuroscience of Virtual Reality: From Virtual Exposure to Embodied Medicine. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Hohwy, J. The Predictive Mind; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Friston, K.J. Does predictive coding have a future? Nat. Neurosci. 2018, 21, 1019–1021. [Google Scholar] [CrossRef] [PubMed]
- Talsma, D. Predictive coding and multisensory integration: An attentional account of the multisensory mind. Front. Integr. Neurosci. 2015, 9, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matamala-Gomez, M.; Donegan, T.; Bottiroli, S.; Sandrini, G.; Sanchez-Vives, M.V.; Tassorelli, C. Immersive Virtual Reality and Virtual Embodiment for Pain Relief. Front. Hum. Neurosci. 2019, 13, 279. [Google Scholar] [CrossRef]
- Porras-Garcia, B.; Serrano-Troncoso, E.; Carulla-Roig, M.; Soto-Usera, P.; Ferrer-Garcia, M.; Figueras-Puigderrajols, N.; Yilmaz, L.; Sen, Y.O.; Shojaeian, N.; Gutiérrez-Maldonado, J. Virtual Reality Body Exposure Therapy for Anorexia Nervosa. A Case Report With Follow-Up Results. Front. Psychol. 2020, 11. [Google Scholar] [CrossRef]
- Riva, G.; Serino, S.; Di Lernia, D.; Pavone, E.F.; Dakanalis, A. Embodied Medicine: Mens Sana in Corpore Virtuale Sano. Front. Hum. Neurosci. 2017, 11, 120. [Google Scholar] [CrossRef] [Green Version]
- Parsons, T.D.; Gaggioli, A.; Riva, G. Virtual Reality for Research in Social Neuroscience. Brain Sci. 2017, 7, 42. [Google Scholar] [CrossRef]
- Serino, S.; Baglio, F.; Rossetto, F.; Realdon, O.; Cipresso, P.; Parsons, T.D.; Cappellini, G.; Mantovani, F.; De Leo, G.; Nemni, R.; et al. Picture Interpretation Test (PIT) 360°: An Innovative Measure of Executive Functions. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Cipresso, P. Modeling behavior dynamics using computational psychometrics within virtual worlds. Front. Psychol. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.R.; Herrera, F.; Jun, H.; Landay, J.A.; Bailenson, J.N. Personal identifiability of user tracking data during observation of 360-degree VR video. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ginzburg, K.; Tsur, N.; Barak-Nahum, A.; Defrin, R. Body awareness: Differentiating between sensitivity to and monitoring of bodily signals. J. Behav. Med. 2014, 37, 564–575. [Google Scholar] [CrossRef] [PubMed]
- Gaggioli, A.; Pallavicini, F.; Morganti, L.; Serino, S.; Scaratti, C.; Briguglio, M.; Crifaci, G.; Vetrano, N.; Giulintano, A.; Bernava, G.M.; et al. Experiential Virtual Scenarios With Real-Time Monitoring (Interreality) for the Management of Psychological Stress: A Block Randomized Controlled Trial. J. Med. Internet Res. 2014, 16, e167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Repetto, C.; Gorini, A.; Algeri, D.; Vigna, C.; Gaggioli, A.; Riva, G. The use of biofeedback in clinical virtual reality: The intrepid project. Stud. Health Technol. Inform. 2009, 144, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Mesa-Gresa, P.; Gil-Gómez, H.; Lozano-Quilis, J.-A.; Gil-Gómez, J.-A. Effectiveness of Virtual Reality for Children and Adolescents with Autism Spectrum Disorder: An Evidence-Based Systematic Review. Sensors 2018, 18, 2486. [Google Scholar] [CrossRef] [Green Version]
- Didehbani, N.; Allen, T.T.; Kandalaft, M.; Krawczyk, D.C.; Chapman, S. Virtual Reality Social Cognition Training for children with high functioning autism. Comput. Hum. Behav. 2016, 62, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Berenguer, C.; Fortea, I.B.; Gómez, S.; Andrés, M.D.E.P.; De Stasio, S. Exploring the Impact of Augmented Reality in Children and Adolescents with Autism Spectrum Disorder: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 6143. [Google Scholar] [CrossRef]
- Marto, A.; Almeida, H.A.; Gonçalves, A. Using Augmented Reality in Patients with Autism: A Systematic Review. In Proceedings of the ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing, Porto, Portugal, 16–18 October 2019; Springer: Cham, Switzerland, 2019; pp. 454–463. [Google Scholar]
- Adery, L.H.; Ichinose, M.; Torregrossa, L.J.; Wade, J.; Nichols, H.; Bekele, E.; Bian, D.; Gizdic, A.; Granholm, E.; Sarkar, N.; et al. The acceptability and feasibility of a novel virtual reality based social skills training game for schizophrenia: Preliminary findings. Psychiatry Res. 2018, 270, 496–502. [Google Scholar] [CrossRef]
- Freeman, D.; Yu, L.-M.; Kabir, T.; Martin, J.; Craven, M.; Leal, J.; Lambe, S.; Brown, S.; Morrison, A.; Chapman, K.; et al. Automated virtual reality (VR) cognitive therapy for patients with psychosis: Study protocol for a single-blind parallel group randomised controlled trial (gameChange). BMJ Open 2019, 9, e031606. [Google Scholar] [CrossRef] [Green Version]
- D’Arma, A.; Isernia, S.; Di Tella, S.; Rovaris, M.; Valle, A.; Baglio, F.; Marchetti, A. Social Cognition Training for Enhancing Affective and Cognitive Theory of Mind in Schizophrenia: A Systematic Review and a Meta-Analysis. J. Psychol. 2020, 1–33. [Google Scholar] [CrossRef]
- Laforest, M.; Bouchard, S.; Crétu, A.-M.; Mesly, O. Inducing an Anxiety Response Using a Contaminated Virtual Environment: Validation of a Therapeutic Tool for Obsessive–Compulsive Disorder. Front. ICT 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Francová, A.; Darmová, B.; Stopková, P.; Kosová, J.; Fajnerová, I. Virtual Reality Exposure Therapy in Patients with Obsessive-Compulsive Disorder. In Proceedings of the 2019 International Conference on Virtual Rehabilitation (ICVR), Tel Aviv, Israel, 21–24 July 2019; pp. 1–2. [Google Scholar]
- Waterworth, J.A.; Waterworth, E.L. Altered, expanded and distributed embodiment: The three stages of interactive presence. In Interacting with Presence: HCI and the Sense of Presence in Computer-Mediated Environments; Riva, G., Waterworth, J.A., Murray, D., Eds.; De Gruyter Open-Online: Berlin, Germany, 2014; pp. 36–50. [Google Scholar]
- Ward, J.; Meijer, P. Visual experiences in the blind induced by an auditory sensory substitution device. Conscious. Cogn. 2010, 19, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Garfinkel, S.N.; Critchley, H.D.; Seth, A. Multisensory integration across exteroceptive and interoceptive domains modulates self-experience in the rubber-hand illusion. Neuropsychologia 2013, 51, 2909–2917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, T.K.J.; Rus-Calafell, M.; Ward, T.; Leff, J.P.; Huckvale, M.; Howarth, E.; Emsley, R.; Garety, P.A. AVATAR therapy for auditory verbal hallucinations in people with psychosis: A single-blind, randomised controlled trial. Lancet Psychiatry 2018, 5, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Lindner, P.; Hamilton, W.; Miloff, A.; Carlbring, P. How to Treat Depression With Low-Intensity Virtual Reality Interventions: Perspectives on Translating Cognitive Behavioral Techniques Into the Virtual Reality Modality and How to Make Anti-Depressive Use of Virtual Reality–Unique Experiences. Front. Psychiatry 2019, 10, 792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoeller, F.; Bertrand, P.; Gerry, L.J.; Jain, A.; Horowitz, A.H.; Zenasni, F. Combining Virtual Reality and Biofeedback to Foster Empathic Abilities in Humans. Front. Psychol. 2019, 9, 9. [Google Scholar] [CrossRef]
- Feijt, M.A.; De Kort, Y.A.; Westerink, J.W.; Ijsselsteijn, W.A. Enhancing empathic interactions in mental health care: Opportunities offered through social interaction technologies. Annu. Rev. Cybertherapy Telemed. 2018, 16, 25–30. [Google Scholar]
- Salminen, M.; Járvelá, S.; Ruonala, A.; Harjunen, V.; Jacucci, G.; Hamari, J.; Ravaja, N. Evoking Physiological Synchrony and Empathy Using Social VR with Biofeedback. IEEE Trans. Affect. Comput. 2019, 1. [Google Scholar] [CrossRef]
- Petkova, V.I.; Ehrsson, H.H. If I Were You: Perceptual Illusion of Body Swapping. PLoS ONE 2008, 3, e3832. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, P.; Guegan, J.; Robieux, L.; McCall, C.A.; Zenasni, F. Learning Empathy Through Virtual Reality: Multiple Strategies for Training Empathy-Related Abilities Using Body Ownership Illusions in Embodied Virtual Reality. Front. Robot. AI 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Riva, G.; Dakanalis, A. Altered Processing and Integration of Multisensory Bodily Representations and Signals in Eating Disorders: A Possible Path Toward the Understanding of Their Underlying Causes. Front. Hum. Neurosci. 2018, 12, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riva, G.; Gaudio, S. Locked to a wrong body: Eating disorders as the outcome of a primary disturbance in multisensory body integration. Conscious. Cogn. 2018, 59, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.; Justice, L.V.; Loveday, C.; Conway, M.A. Switching memory perspective. Conscious. Cogn. 2017, 56, 50–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riva, G. The Key to Unlocking the Virtual Body: Virtual Reality in the Treatment of Obesity and Eating Disorders. J. Diabetes Sci. Technol. 2011, 5, 283–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Normand, J.-M.; Giannopoulos, E.; Spanlang, B.; Eslater, M. Multisensory Stimulation Can Induce an Illusion of Larger Belly Size in Immersive Virtual Reality. PLoS ONE 2011, 6, e16128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Maldonado, J.; Wiederhold, B.K.; Riva, G. Future Directions: How Virtual Reality Can Further Improve the Assessment and Treatment of Eating Disorders and Obesity. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 148–153. [Google Scholar] [CrossRef]
- Cesa, G.L.; Manzoni, G.; Bacchetta, M.; Castelnuovo, G.; Conti, S.; Gaggioli, A.; Mantovani, F.; Molinari, E.; Cárdenas-López, G.; Riva, G. Virtual Reality for Enhancing the Cognitive Behavioral Treatment of Obesity With Binge Eating Disorder: Randomized Controlled Study With One-Year Follow-up. J. Med. Internet Res. 2013, 15, e113. [Google Scholar] [CrossRef]
- Manzoni, G.M.; Cesa, G.L.; Bacchetta, M.; Castelnuovo, G.; Conti, S.; Gaggioli, A.; Mantovani, F.; Molinari, E.; Cárdenas-López, G.; Riva, G. Virtual Reality–Enhanced Cognitive–Behavioral Therapy for Morbid Obesity: A Randomized Controlled Study with 1 Year Follow-Up. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Osimo, S.A.; Pizarro, R.; Spanlang, B.; Slater, M. Conversations between self and self as Sigmund Freud—A virtual body ownership paradigm for self counselling. Sci. Rep. 2015, 5, srep13899. [Google Scholar] [CrossRef]
- Serino, S.; Dakanalis, A. Bodily illusions and weight-related disorders: Clinical insights from experimental research. Ann. Phys. Rehabil. Med. 2017, 60, 217–219. [Google Scholar] [CrossRef]
- Serino, S.; Polli, N.; Riva, G. From avatars to body swapping: The use of virtual reality for assessing and treating body-size distortion in individuals with anorexia. J. Clin. Psychol. 2019, 75, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Preston, C.; Ehrsson, H.H. Illusory Changes in Body Size Modulate Body Satisfaction in a Way That Is Related to Non-Clinical Eating Disorder Psychopathology. PLoS ONE 2014, 9, e85773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preston, C.; Ehrsson, H.H. Illusory Obesity Triggers Body Dissatisfaction Responses in the Insula and Anterior Cingulate Cortex. Cereb. Cortex 2016, 26, 4450–4460. [Google Scholar] [CrossRef] [PubMed]
- Serino, S.; Scarpina, F.; Keizer, A.; Pedroli, E.; Dakanalis, A.; Castelnuovo, G.; Chirico, A.; Novelli, M.; Gaudio, S.; Riva, G. A Novel Technique for Improving Bodily Experience in a Non-operable Super-Super Obesity Case. Front. Psychol. 2016, 7, 837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serino, S.; Pedroli, E.; Keizer, A.; Triberti, S.; Dakanalis, A.; Pallavicini, F.; Chirico, A.; Riva, G. Virtual Reality Body Swapping: A Tool for Modifying the Allocentric Memory of the Body. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Keizer, A.; Van Elburg, A.; Helms, R.; Dijkerman, H.C. A Virtual Reality Full Body Illusion Improves Body Image Disturbance in Anorexia Nervosa. PLoS ONE 2016, 11, e0163921. [Google Scholar] [CrossRef]
- Lane, R.D.; Reiman, E.M.; Ahern, G.L.; Schwartz, G.E.; Davidson, R.J. Neuroanatomical correlates of happiness, sadness, and disgust. Am. J. Psychiatry 1997, 154, 926–933. [Google Scholar] [CrossRef] [Green Version]
- Damasio, A.R.; Grabowski, T.J.; Bechara, A.; Damasio, H.; Ponto, L.L.; Parvizi, J.; Hichwa, R.D. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat. Neurosci. 2000, 3, 1049–1056. [Google Scholar] [CrossRef]
- Posner, J.; Russell, J.A.; Petersona, B.S. The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 2005, 17, 715–734. [Google Scholar] [CrossRef]
- Barbas, H. Flow of information for emotions through temporal and orbitofrontal pathways. J. Anat. 2007, 211, 237–249. [Google Scholar] [CrossRef]
- Raichle, M.E.; MacLeod, A.M.; Snyder, A.Z.; Powers, W.J.; Gusnard, D.A.; Shulman, G.L. A default mode of brain function. Proc. Natl. Acad. Sci. USA 2001, 98, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Greicius, M.D.; Krasnow, B.; Reiss, A.L.; Menon, V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 2003, 100, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Fahrenberg, J.; Myrtek, M.; Pawlik, K.; Perrez, M. Ambulatory Assessment—Monitoring Behavior in Daily Life Settings. Eur. J. Psychol. Assess. 2007, 23, 206–213. [Google Scholar] [CrossRef]
- Ebetella, A.; Ezucca, R.; Ecetnarski, R.; Egreco, A.; Elanatà, A.; Emazzei, D.; Etognetti, A.; Arsiwalla, X.D.; Eomedas, P.; Rossi, D.E.; et al. Inference of human affective states from psychophysiological measurements extracted under ecologically valid conditions. Front. Neurosci. 2014, 8, 286. [Google Scholar] [CrossRef]
- Baños, R.; Botella, C.; Alcañiz, M.; Liaño, V.; Guerrero, B.; Rey, B. Immersion and Emotion: Their Impact on the Sense of Presence. Cyberpsychol. Behav. 2004, 7, 734–741. [Google Scholar] [CrossRef]
- Riva, G.; Mantovani, F.; Capideville, C.S.; Preziosa, A.; Morganti, F.; Villani, D.; Gaggioli, A.; Botella, C.; Alcañiz, M. Affective Interactions Using Virtual Reality: The Link between Presence and Emotions. Cyberpsychol. Behav. 2007, 10, 45–56. [Google Scholar] [CrossRef]
- Guixeres, J.; Saiz, J.; Alcañiz, M.; Cebolla, A.; Escobar, P.; Baños, R.; Botella, C.; Lison, J.F.; Alvarez, J.; Cantero, L.; et al. Effects of virtual reality during exercise in children. J. Univers. Comput. Sci. 2013, 19, 1199–1218. [Google Scholar]
- Cebolla, A.; Herrero, R.; Ventura, S.; Miragall, M.; Bellosta-Batalla, M.; Llorens, R.; Baños, R.M. Putting Oneself in the Body of Others: A Pilot Study on the Efficacy of an Embodied Virtual Reality System to Generate Self-Compassion. Front. Psychol. 2019, 10, 1521. [Google Scholar] [CrossRef]
- Felnhofer, A.; Kothgassner, O.D.; Schmidt, M.; Heinzle, A.-K.; Beutl, L.; Hlavacs, H.; Kryspin-Exner, I. Is virtual reality emotionally arousing? Investigating five emotion inducing virtual park scenarios. Int. J. Hum. Comput. Stud. 2015, 82, 48–56. [Google Scholar] [CrossRef]
- Lorenzo, G.; Lledó, A.; Pomares, J.; Roig, R. Design and application of an immersive virtual reality system to enhance emotional skills for children with autism spectrum disorders. Comput. Educ. 2016, 98, 192–205. [Google Scholar] [CrossRef] [Green Version]
- Calvo, R.A.; D’Mello, S.; Gratch, J.M.; Kappas, A. (Eds.) The Oxford Handbook of Affective Computing; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Calvo, R.A.; D’Mello, S.K. Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications. IEEE Trans. Affect. Comput. 2010, 1, 18–37. [Google Scholar] [CrossRef]
- Roberts, N.A.; Tsai, J.L.; Coan, J.A. Emotion elicitation using dyadic interaction task. Handb. Emot. Elicitation Assess. 2007, 1, 106–123. [Google Scholar]
- Harmon-Jones, E.; Amodio, D.M.; Zinner, L.R. Social psychological methods of emotion elicitation. Handb. Emot. Elicitation Assess. 2007, 25, 91–105. [Google Scholar]
- Ekman, P. The directed facial action task. In Handbook of Emotion Elicitation and Assessment; Oxford University Press: New York, NY, USA, 2007; pp. 47–53. [Google Scholar]
- Kory Jacqueline, D. Sidney A_ect Elicitation for a_ective Computing. In the Oxford Handbook of Affective Computing; Oxford University Press: New York, NY, USA, 2014; pp. 371–383. [Google Scholar]
- Risko, E.F.; Laidlaw, K.E.W.; Freeth, M.; Foulsham, T.; Ekingstone, A. Social attention with real versus reel stimuli: Toward an empirical approach to concerns about ecological validity. Front. Hum. Neurosci. 2012, 6, 143. [Google Scholar] [CrossRef] [Green Version]
- Jang, D.P.; Kim, I.Y.; Nam, S.W.; Wiederhold, B.K.; Wiederhold, M.D.; Kim, S.I. Analysis of Physiological Response to Two Virtual Environments: Driving and Flying Simulation. Cyberpsychol. Behav. 2002, 5, 11–18. [Google Scholar] [CrossRef]
- Marín-Morales, J.; Higuera-Trujillo, J.L.; Greco, A.; Guixeres, J.; Llinares, C.; Scilingo, E.P.; Alcañiz, M.; Valenza, G. A_ective computing in virtual reality: Emotion recognition from brain and heartbeat dynamics using wearable sensors. Sci. Rep. 2018, 8, 13657. [Google Scholar] [CrossRef]
- Slater, M.; Antley, A.; Davison, A.; Swapp, D.; Guger, C.; Barker, C.; Pistrang, N.; Sanchez-Vives, M.V. A Virtual Reprise of the Stanley Milgram Obedience Experiments. PLoS ONE 2006, 1, e39. [Google Scholar] [CrossRef]
- Bouchard, S.; St-Jacques, J.; Robillard, G.; Renaud, P. Anxiety Increases the Feeling of Presence in Virtual Reality. Presence Teleoperators Virtual Environ. 2008, 17, 376–391. [Google Scholar] [CrossRef]
- Baños, R.M.; Botella, C.; Guerrero, B.; Liaño, V.; Alcañiz, M.; Rey, B. The Third Pole of the Sense of Presence: Comparing Virtual and Imagery Spaces. Psychnology J. 2005, 3, 90–100. Available online: http://www.psychnology.org/index.php?page=abstract---volume-103---banos (accessed on 12 October 2020).
- Michaud, M.; Bouchard, S.; Dumoulin, S.; Zhong, X.W.; Renaud, P. Manipulating presence and its impact on anxiety. Cyberpsychol. Behav. 2004, 7, 297–298. [Google Scholar] [CrossRef]
- Chirico, A.; Gaggioli, A. When Virtual Feels Real: Comparing Emotional Responses and Presence in Virtual and Natural Environments. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 220–226. [Google Scholar] [CrossRef]
- Cadet, L.B.; Chainay, H. Memory of virtual experiences: Role of immersion, emotion and sense of presence. Int. J. Hum. Comput. Stud. 2020, 144, 102506. [Google Scholar] [CrossRef]
- Schubring, D.; Kraus, M.; Stolz, C.; Weiler, N.; Keim, D.; Schupp, H.T. Virtual Reality Potentiates Emotion and Task Effects of Alpha/Beta Brain Oscillations. Brain Sci. 2020, 10, 537. [Google Scholar] [CrossRef]
- Pallavicini, F.; Pepe, A.; Ferrari, A.; Garcea, G.; Zanacchi, A.; Mantovani, F. What Is the Relationship Among Positive Emotions, Sense of Presence, and Ease of Interaction in Virtual Reality Systems? An On-Site Evaluation of a Commercial Virtual Experience. PRESENCE Virtual Augment. Real. 2020, 27, 183–201. [Google Scholar] [CrossRef]
- Diemer, J.; Alpers, G.W.; Peperkorn, H.M.; Shiban, Y.; Muhlberger, A. The impact of perception and presence on emotional reactions: A review of research in virtual reality. Front. Psychol. 2015, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Gorini, A.; Mosso, J.L.; Mosso, D.; Pineda, E.; Ruíz, N.L.; Ramíez, M.; Morales, J.L.; Riva, G. Emotional Response to Virtual Reality Exposure across Different Cultures: The Role of the Attribution Process. Cyberpsychol. Behav. 2009, 12, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, S.; Dumoulin, S.; Labonté-Chartrand, G.; Robillard, G.; Renaud, P. Perceived Realism has a Significant Impact on the Feeling of Presence. Cyberpsychol. Behav. 2006, 9, 660. [Google Scholar] [CrossRef]
- Weibel, D.; Wissmath, B.; Mast, F.W. The role of cognitive appraisal in media-induced presence and emotions. Cogn. Emot. 2011, 25, 1291–1298. [Google Scholar] [CrossRef]
- Adolphs, R. The Social Brain: Neural Basis of Social Knowledge. Annu. Rev. Psychol. 2009, 60, 693–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilken, T.; Keeling, D.I.; De Ruyter, K.; Mahr, D.; Chylinski, M. Seeing eye to eye: Social augmented reality and shared decision making in the marketplace. J. Acad. Mark. Sci. 2020, 48, 143–164. [Google Scholar] [CrossRef] [Green Version]
- Carrozzi, A.; Chylinski, M.; Heller, J.; Hilken, T.; Keeling, D.; de Ruyter, K. What’s mine is a hologram? How shared augmented reality augments psychological ownership. J. Interact. Mark. 2019, 48, 71–88. [Google Scholar] [CrossRef]
- Pan, X.; Hamilton, A.F. Why and how to use virtual reality to study human social interaction: The challenges of exploring a new research landscape. Br. J. Psychol. 2018, 109, 395–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calabrò, R.S.; Naro, A. Understanding Social Cognition Using Virtual Reality: Are We still Nibbling around the Edges? Brain Sci. 2019, 10, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faur, C.; Clavel, C.; Pesty, S.; Martin, J.-C. PERSEED: A Self-Based Model of Personality for Virtual Agents Inspired by Socio-cognitive Theories. In Proceedings of the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, Geneva, Switzerland, 2–5 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 467–472. [Google Scholar]
- Kim, K.; Billinghurst, M.; Bruder, G.; Duh, H.B.-L.; Welch, G. Revisiting Trends in Augmented Reality Research: A Review of the 2nd Decade of ISMAR (2008–2017). IEEE Trans. Vis. Comput. Graph. 2018, 24, 2947–2962. [Google Scholar] [CrossRef]
- Wang, X.; Dunston, P.S. Comparative Effectiveness of Mixed Reality-Based Virtual Environments in Collaborative Design. IEEE Trans. Syst. Man Cybern. 2011, 41, 284–296. [Google Scholar] [CrossRef]
- Kiyokawa, K.; Billinghurst, M.; Hayes, S.; Gupta, A.; Sannohe, Y.; Kato, H. Communication behaviors of co-located users in collaborative AR interfaces. In Proceedings of the 1st International Symposium on Mixed and Augmented Reality, Darmstadt, Germany, 30 September–1 October 2002; IEEE: Piscataway, NJ, USA, 2002; pp. 139–148. Available online: http://dl.acm.org/citation.cfm?id=850976.854962 (accessed on 12 October 2020).
- Dong, S.; Behzadan, A.H.; Chen, F.; Kamat, V.R. Collaborative visualization of engineering processes using tabletop augmented reality. Adv. Eng. Softw. 2013, 55, 45–55. [Google Scholar] [CrossRef]
- Poelman, R.; Akman, O.; Lukosch, S.; Jonker, P. As if Being There: Mediated Reality for Crime Scene Investigation. In Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work Companion, New York, NY, USA, 11–15 February 2012; p. 1267. Available online: https://doi.org/10.1145/2145204.2145394 (accessed on 12 October 2020).
- Lukosch, S.; Billinghurst, M.; Alem, L.; Kiyokawa, K. Collaboration in Augmented Reality. Comput. Support. Coop. Work 2015, 24, 515–525. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.R.; Jun, H.; Herrera, F.; Villa, J.Y.; Welch, G.; Bailenson, J.N. Social interaction in augmented reality. PLoS ONE 2019, 14, e0216290. [Google Scholar] [CrossRef] [Green Version]
- Jonas, M.; Said, S.; Yu, D.; Aiello, C.; Furlo, N.; Zytko, D. Towards a Taxonomy of Social VR Application Design. In Proceedings of the Extended Abstracts of the Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts—CHI PLAY ′19 Extended Abstracts, Barcelona, Spain, 22–25 October 2019; pp. 437–444. [Google Scholar]
- Salminen, M.; Järvelä, S.; Ruonala, A.; Timonen, J.; Mannermaa, K.; Ravaja, N.; Jacucci, G. Bio-adaptive social VR to evoke affective interdependence: DYNECOM. In 23rd International Conference on Intelligent User Interfaces; ACM: Tokyo, Japan, 2018; pp. 73–77. [Google Scholar]
- Bailenson, J.N.; Beall, A.C.; Loomis, J.; Blascovich, J.; Turk, M. Transformed Social Interaction: Decoupling Representation from Behavior and Form in Collaborative Virtual Environments. Presence Teleoperators Virtual Environ. 2004, 13, 428–441. [Google Scholar] [CrossRef]
- Fox, J.; Ahn, S.J.; Janssen, J.H.; Yeykelis, L.; Segovia, K.Y.; Bailenson, J.N. Avatars Versus Agents: A Meta-Analysis Quantifying the Effect of Agency on Social Influence. Hum. Comput. Interact. 2015, 30, 401–432. [Google Scholar] [CrossRef]
- Roth, D.; Latoschik, M.E.; Vogeley, K.; Bente, G. Hybrid Avatar-Agent Technology–A Conceptual Step Towards Mediated “Social” Virtual Reality and its Respective Challenges. i-com 2015, 14, 107–114. [Google Scholar] [CrossRef]
- Triberti, S.; Durosini, I.; Aschieri, F.; Villani, D.; Riva, G. Changing Avatars, Changing Selves? The Influence of Social and Contextual Expectations on Digital Rendition of Identity. Cyberpsychol. Behav. Soc. Netw. 2017, 20, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Biocca, F. The cyborg’s dilemma: Progressive embodiment in virtual environments. J. Comput. Mediat. Commun. 1997, 3, JCMC324. [Google Scholar] [CrossRef]
- Peck, T.C.; Seinfeld, S.; Aglioti, S.M.; Slater, M. Putting yourself in the skin of a black avatar reduces implicit racial bias. Conscious. Cogn. 2013, 22, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Serino, S.; Scarpina, F.; Chirico, A.; Dakanalis, A.; Di Lernia, D.; Colombo, D.; Catallo, V.; Pedroli, E.; Riva, G. Gulliver’s virtual travels: Active embodiment in extreme body sizes for modulating our body representations. Cogn. Process. 2020, 21, 509–520. [Google Scholar] [CrossRef]
- Donegan, T.; Ryan, B.E.; Swidrak, J.; Sanchez-Vives, M.V. Immersive Virtual Reality for Clinical Pain: Considerations for Effective Therapy. Front. Virtual Real. 2020, 1, 1. [Google Scholar] [CrossRef]
- Kruzan, K.P.; Won, A.S. Embodied well-being through two media technologies: Virtual reality and social media. New Media Soc. 2019, 21, 1734–1749. [Google Scholar] [CrossRef]
- Maister, L.; Slater, M.; Sanchez-Vives, M.V.; Tsakiris, M. Changing bodies changes minds: Owning another body affects social cognition. Trends Cogn. Sci. 2015, 19, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Steed, A. Is the rubber hand illusion induced by immersive virtual reality? In Proceedings of the 2010 IEEE Virtual Reality Conference (VR), Waltham, MA, USA, 20–24 March 2010; pp. 95–102. [Google Scholar]
- Waltemate, T.; Gall, D.; Roth, D.; Botsch, M.; Latoschik, M.E. The Impact of Avatar Personalization and Immersion on Virtual Body Ownership, Presence, and Emotional Response. IEEE Trans. Vis. Comput. Graph. 2018, 24, 1643–1652. [Google Scholar] [CrossRef]
- Schweinberger, S.R.; Franz, V.H.; Palermo, R. Current developments and challenges for the British Journal of Psychology. Br. J. Psychol. 2018, 109, 1–5. [Google Scholar] [CrossRef]
- Dzardanova, E.; Kasapakis, V.; Gavalas, D. Social Virtual Reality. In Encyclopedia of Computer Graphics and Games; Springer: Cham, Switzerland, 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Biocca, F.; Levy, M.R. Communication in the Age of Virtual Reality; Routledge: London, UK, 2013. [Google Scholar]
- Oh, C.S.; Bailenson, J.N.; Welch, G.F. A Systematic Review of Social Presence: Definition, Antecedents, and Implications. Front. Robot. AI 2018, 5, 114. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Bruder, G.; Welch, G.F. Blowing in the Wind: Increasing Copresence with a Virtual Human via Airflow Influence in Augmented Reality. In Proceeding of the 2018 International Conference on Artificial Reality and Telexistence Eurographics Symposium on Virtual Environments, Limassol, Cyprus, 7–9 November 2020. [Google Scholar]
- Kim, K.; Maloney, D.; Bruder, G.; Bailenson, J.N.; Welch, G.F. The effects of virtual human’s spatial and behavioral coherence with physical objects on social presence in AR. Comput. Animat. Virtual Worlds 2017, 28, e1771. [Google Scholar] [CrossRef]
- Kim, K.; Boelling, L.; Haesler, S.; Bailenson, J.; Bruder, G.; Welch, G.F. Does a Digital Assistant Need a Body? The Influence of Visual Embodiment and Social Behavior on the Perception of Intelligent Virtual Agents in AR. In Proceedings of the 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Munich, Germany, 16–20 October 2018; pp. 105–114. [Google Scholar] [CrossRef]
- Slater, M.; Wilbur, S. A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence Teleoperators Virtual Environ. 1997, 6, 603–616. [Google Scholar] [CrossRef]
- Grassini, S.; Laumann, K.; Skogstad, M.R. The Use of Virtual Reality Alone Does Not Promote Training Performance (but Sense of Presence Does). Front. Psychol. 2020, 11, 1743. [Google Scholar] [CrossRef]
- Lee, K.M. Presence, explicated. Commun. Theory 2004, 14, 27–50. [Google Scholar] [CrossRef]
- Short, J.A. Effects of Medium of Communication on Experimental Negotiation. Hum. Relat. 1974, 27, 225–234. [Google Scholar] [CrossRef]
- Biocca, F.; Harms, C.; Burgoon, J.K. Toward a More Robust Theory and Measure of Social Presence: Review and Suggested Criteria. Presence Teleoperators Virtual Environ. 2003, 12, 456–480. [Google Scholar] [CrossRef]
- Biocca, F. The cyborg’s dilemma: Embodiment in virtual environments. In Proceedings of the Second International Conference on Cognitive Technology Humanizing the Information Age, Aizu-Wakamatsu City, Japan, 25–28 August 1997; pp. 12–26. [Google Scholar] [CrossRef]
- Riva, G.; Waterworth, J.; Waterworth, E.L.; Mantovani, F. From intention to action: The role of presence. New Ideas Psychol. 2011, 29, 24–37. [Google Scholar] [CrossRef]
- Fox, J.; Arena, D.; Bailenson, J.N. Virtual reality: A survival guide for the social scientist. J. Media Psychol. 2009, 21, 95–113. [Google Scholar] [CrossRef]
- Blascovich, J.; Loomis, J.; Beall, A.C.; Swinth, K.R.; Hoyt, C.L.; Bailenson, J.N. Immersive Virtual Environment Technology as a Methodological Tool for Social Psychology. Psychol. Inq. 2002, 13, 103–124. [Google Scholar] [CrossRef]
- Turner, B.O.; Kingstone, A.; Risko, E.F.; Santander, T.; Li, J.; Miller, M.B. Recording brain activity can function as an implied social presence and alter neural connectivity. Cogn. Neurosci. 2020, 11, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Waytz, A.; Mitchell, J.P. Two mechanisms for simulating other minds: Dissociations between mirroring and self-projection. Curr. Dir. Psychol. Sci. 2011, 20, 197–200. [Google Scholar] [CrossRef]
- Davis, S.; Nesbitt, K.; Nalivaiko, E. A Systematic Review of Cybersickness. In Proceedings of the 2014 Conference on Innovation & Technology in Computer Science Education—ITiCSE ′14, Darmstadt, Germany, 27–29 June 2014; pp. 1–9. [Google Scholar]
- Davis, S.; Nesbitt, K.; Nalivaiko, E. Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters. In Proceedings of the 11th Australasian Conference on Interactive Entertainment, Sydney, Australia, 23 January 2015; pp. 3–14. [Google Scholar]
- Cobb, S.V.; Nichols, S.; Ramsey, A.; Wilson, J.R. Virtual Reality-Induced Symptoms and Effects (VRISE). Presence Teleoperators Virtual Environ. 1999, 8, 169–186. [Google Scholar] [CrossRef]
- Kennedy, R.S.; Berbaum, K.S.; Drexler, J. Methodological and measurement issues for identification of engineering features contributing to virtual reality sickness. In Proceedings of the Image 7 Conference, Tucson, AZ, USA, 13–16 November 1994. [Google Scholar]
- Saredakis, D.; Szpak, A.; Birckhead, B.; Keage, H.A.D.; Rizzo, A.; Loetscher, T. Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis. Front. Hum. Neurosci. 2020, 14, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bos, J.E.; Bles, W.; Groen, E.L. A theory on visually induced motion sickness. Displays 2008, 29, 47–57. [Google Scholar] [CrossRef]
- Aardema, F.; O’Connor, K.; Côté, S.; Taillon, A. Virtual Reality Induces Dissociation and Lowers Sense of Presence in Objective Reality. Cyberpsychol. Behav. Soc. Netw. 2010, 13, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Gentile, D.; Choo, H.; Liau, A.; Sim, T.; Li, D.; Fung, D.; Khoo, A. Pathological videogame use among youths: A two-year longitudinal study. Pediatrics 2011, 127, 319–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiegel, J.S. The Ethics of Virtual Reality Technology: Social Hazards and Public Policy Recommendations. Sci. Eng. Ethic 2017, 24, 1537–1550. [Google Scholar] [CrossRef]
- Gaggioli, A. Transformative Experience Design. In Human Computer Confluence; De Gruyter: Berlin, Germany, 2016; pp. 97–122. [Google Scholar] [CrossRef]
- Parsons, T.D. Ethical Challenges in Digital Psychology and Cyberpsychology; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parsons, T.D.; Gaggioli, A.; Riva, G. Extended Reality for the Clinical, Affective, and Social Neurosciences. Brain Sci. 2020, 10, 922. https://doi.org/10.3390/brainsci10120922
Parsons TD, Gaggioli A, Riva G. Extended Reality for the Clinical, Affective, and Social Neurosciences. Brain Sciences. 2020; 10(12):922. https://doi.org/10.3390/brainsci10120922
Chicago/Turabian StyleParsons, Thomas D., Andrea Gaggioli, and Giuseppe Riva. 2020. "Extended Reality for the Clinical, Affective, and Social Neurosciences" Brain Sciences 10, no. 12: 922. https://doi.org/10.3390/brainsci10120922
APA StyleParsons, T. D., Gaggioli, A., & Riva, G. (2020). Extended Reality for the Clinical, Affective, and Social Neurosciences. Brain Sciences, 10(12), 922. https://doi.org/10.3390/brainsci10120922