Cognitive Function Improvement in Mouse Model of Alzheimer’s Disease Following Transcranial Direct Current Stimulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. The tDCS Treatment
2.2. Brain Tissue Preparation
2.3. Excitatory Postsynaptic Potential (EPSP) Recording
2.4. Western Blot
2.5. Statistical Analysis
3. Results
3.1. tDCS Could Improve the Slope of f-EPSP
3.2. Expression of tDCS Protein Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gelman, S.; Palma, J.; Tombaugh, G.; Ghavami, A. Differences in synaptic dysfunction between rTg4510 and APP/PS1 mouse models of Alzheimer’s disease. J. Alzheimers Dis. 2018, 61, 195–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeo Jin, K. Transcranial direct current stimulation as an alternative treatment in patients with Alzheimer’s disease. Brain Neurorehabil. 2017, 10, e4. [Google Scholar]
- Gondard, E.; Soto-Montenegro, M.L.; Cassol, A.; Lozano, A.M.; Hamani, C. Transcranial direct current stimulation does not improve memory deficits or alter pathological hallmarks in a rodent model of Alzheimer’s disease. J. Psychiatr. Res. 2019, 114, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Angius, L.; Hopker, J.; Mauger, A.R. The ergogenic effects of transcranial direct current stimulation on exercise performance. Front. Physiol. 2017, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- McLaren, M.E.; Nissim, N.R.; Woods, A.J. The effects of medication use in transcranial direct current stimulation: A brief review. Brain Stimul. 2018, 11, 52–58. [Google Scholar] [CrossRef]
- Fuentes Calderón, M.A.; Miralles, A.N.; Pimienta, M.J.; Estella, J.M.G.; Ledesma, M.J.S. Analysis of the factors related to the effectiveness of transcranial current stimulation in upper limb motor function recovery after stroke: A systematic review. J. Med. Syst. 2019, 43, 69. [Google Scholar] [CrossRef]
- Elsner, B.; Kugler, J.; Pohl, M.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst. Rev. 2016, 3, CD009645. [Google Scholar] [CrossRef]
- Agarwal, S.; Pawlak, N.; Cucca, A.; Sharma, K.; Dobbs, B.; Shaw, M.; Charvet, L.; Biagioni, M. Remotely-supervised transcranial direct current stimulation paired with cognitive training in Parkinson’s disease: An open-label study. J. Clin. Neurosci. 2018, 57, 51–57. [Google Scholar] [CrossRef]
- Manenti, R.; Cotelli, M.S.; Cobelli, C.; Gobbi, E.; Brambilla, M.; Rusich, D.; Alberici, A.; Padovani, A.; Borroni, B.; Cotelli, M. Transcranial direct current stimulation combined with cognitive training for the treatment of Parkinson Disease: A randomized, placebo-controlled study. Brain Stimul. 2018, 11, 1251–1262. [Google Scholar] [CrossRef]
- Manenti, R.; Brambilla, M.; Benussi, A.; Rosini, S.; Cobelli, C.; Ferrari, C.; Petesi, M.; Orizio, I.; Padovani, A.; Borroni, B.; et al. Mild cognitive impairment in Parkinson’s disease is improved by transcranial direct current stimulation combined with physical therapy. Mov. Disord. 2016, 31, 715–724. [Google Scholar] [CrossRef]
- Boudewyn, M.; Roberts, B.M.; Mizrak, E.; Ranganath, C.; Carter, C.S. Prefrontal transcranial direct current stimulation (tDCS) enhances behavioral and EEG markers of proactive control. Cogn. Neurosci. 2019, 10, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, Y.; Yue, Z.; Wang, X.; Zhang, J.; Fang, J. Transcranial direct current stimulation modulates the brain’s response to foot stimuli under dual-task condition: A fMRI study in elderly adults. Neurosci. Lett. 2019, 23, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.H.; Park, S.D.; Sim, K.C. The effect of tDCS on cognition and neurologic recovery of rats with Alzheimer’s disease. J. Phys. Ther. Sci. 2014, 26, 247–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jooyoung, O.; Jinsil, H.; Dongrae, C.; JinYoung, P.; Jae-Jin, K.; Boreom, L. The effects of transcranial direct current stimulation on the cognitive and behavioral changes after electrode implantation surgery in rats. Front. Psychiatry 2019, 10, 291. [Google Scholar]
- Leffa, D.T.; Bellaver, B.; Salvi, A.A.; de Oliveira, C.; Caumo, W.; Grevet, E.H.; Fregni, F.; Quincozes-Santos, A.; Rohde, L.A.; Torres, I.L.S. Transcranial direct current stimulation improves long-term memory deficits in an animal model of attention-deficit/hyperactivity disorder and modulates oxidative and inflammatory parameters. Brain Stimul. 2018, 11, 743–751. [Google Scholar] [CrossRef]
- Podda, M.; Sara, C.; Mastrodonato, A.; Fusco, S.; Leone, L.; Barbati, S.; Colussi, C.; Ripoli, C.; Grassi, C. Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression. Sci. Rep. 2016, 6, 22180. [Google Scholar] [CrossRef]
- Yu, X.; Li, Y.; Wen, H.; Zhang, Y.; Tian, X. Intensity-dependent effects of repetitive anodal transcranial direct current stimulation on learning and memory in a rat model of Alzheimer’s disease. Neurobiol. Learn. Mem. 2015, 123, 168–178. [Google Scholar] [CrossRef]
- Kimura, R.; Devi, L.; Ohno, M. Partial reduction of BACE1 improves synaptic plasticity, recent and remote memories in Alzheimer’s disease transgenic mice. J. Neurochem. 2010, 113, 248–261. [Google Scholar] [CrossRef] [Green Version]
- Götz, J.; Bodea, L.G.; Goedert, M. Rodent models for Alzheimer disease. Nat. Rev. Neurosci. 2018, 19, 583–598. [Google Scholar] [CrossRef]
- Weickert, T.W.; Salimuddin, H.; Lenroot, R.K.; Bruggemann, J.; Looae, C.; Vercammen, A.; Kindlera, J.; Weickert, C.S. Preliminary findings of four-week, task-based anodal prefrontal cortex transcranial direct current stimulation transferring to other cognitive improvements in schizophrenia. Psychiatry Res. 2019, 280, 112487. [Google Scholar] [CrossRef]
- Cai, M.; Guo, Z.; Xing, G.; Peng, H.; Zhou, L.; Chen, H.; McClure, M.A.; He, L.; Xiong, L.; He, B.; et al. Transcranial direct current stimulation improves cognitive function in mild to moderate Alzheimer disease: A meta-analysis. Alzheimer Dis. Assoc. Disord. 2019, 33, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Bliss, T.V.; Collingridge, G.L. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 1993, 361, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.I.; Paulus, W.; Batsikadze, G.; Jamil, A.; Kuo, M.F.; Nitsche, M.A. Acute and chronic effects of noradrenergic enhancement on transcranial direct current stimulation-inducedneuroplasticity in humans. J. Physiol. 2017, 595, 1305–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelletier, S.J.; Cicchetti, F. Cellular and molecular mechanisms of action of transcranial direct current stimulation: Evidence from in vitro and in vivco models. Int. J. Neuropsychopharmacol. 2015, 18, pyu047. [Google Scholar] [CrossRef] [PubMed]
- Brigadski, T.; Leßmann, V. BDNF: A regulator of learning and memory processes with clinical potential. e-Neuroforum 2014, 5, 1–11. [Google Scholar] [CrossRef]
- Szuhany, K.L.; Bugatti, M.; Otto, M.W. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J. Psychiatr. Res. 2015, 60, 56–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caccamo, A.; Maldonado, M.A.; Bokov, A.F.; Majumder, S.; Oddo, S. CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2010, 107, 22687–22692. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.J.; Kogan, J.H.; Frankland, P.W.; Kida, S. CREB and memory. Annu. Rev. Neurosci. 1998, 21, 127–148. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Y.; Wang, Z.Y.; Xie, J.W.; Wang, T.; Wang, X.; Xu, Y.; Cai, J.H. Dl-3-n-butylphthalide-induced upregulation of antioxidant defense is involved in the enhancement of cross talk between CREB and Nrf2 in an Alzheimer’s disease mouse model. Neurobiol. Aging 2016, 38, 32–46. [Google Scholar] [CrossRef]
- Yu, X.W.; Oh, M.M.; Disterhoft, J.F. CREB, cellular excitability, and cognition: Implications for aging. Behav. Brain Res. 2017, 322, 206–211. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Lin, B.R.; Zhao, J.; Shi, Y.Z.; Yan, F.F.; Huang, C.B. No effects of anodal transcranial direct current stimulation on contrast sensitivity function. Restor. Neurol. Neurosci. 2019, 37, 109–118. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.-I.; Han, J.-Y.; Song, M.-K.; Park, H.-K.; Jo, J. Cognitive Function Improvement in Mouse Model of Alzheimer’s Disease Following Transcranial Direct Current Stimulation. Brain Sci. 2020, 10, 547. https://doi.org/10.3390/brainsci10080547
Kim W-I, Han J-Y, Song M-K, Park H-K, Jo J. Cognitive Function Improvement in Mouse Model of Alzheimer’s Disease Following Transcranial Direct Current Stimulation. Brain Sciences. 2020; 10(8):547. https://doi.org/10.3390/brainsci10080547
Chicago/Turabian StyleKim, Wang-In, Jae-Young Han, Min-Keun Song, Hyeng-Kyu Park, and Jihoon Jo. 2020. "Cognitive Function Improvement in Mouse Model of Alzheimer’s Disease Following Transcranial Direct Current Stimulation" Brain Sciences 10, no. 8: 547. https://doi.org/10.3390/brainsci10080547
APA StyleKim, W. -I., Han, J. -Y., Song, M. -K., Park, H. -K., & Jo, J. (2020). Cognitive Function Improvement in Mouse Model of Alzheimer’s Disease Following Transcranial Direct Current Stimulation. Brain Sciences, 10(8), 547. https://doi.org/10.3390/brainsci10080547