Cerebral Hemodynamic Changes to Transcranial Doppler in Asymptomatic Patients with Fabry’s Disease
Abstract
:1. Introduction
1.1. Fabry’s Disease
1.2. Transcranial Doppler Sonography
1.3. Aim and Hypothesis
2. Materials and Methods
2.1. Subjects and Assessment
2.2. TCD Procedure
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Main Findings
4.2. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Germain, D.P. Fabry disease. Orphanet J. Rare Dis. 2010, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Brady, R.O. Enzymatic abnormalities in diseases of sphingolipid metabolism. Clin. Chem. 1967, 13, 565–577. [Google Scholar] [CrossRef]
- Houge, G.; Skarbøvik, A.J. Fabry disease--A diagnostic and therapeutic challenge. Tidsskr. Den Nor. Laegeforening Tidsskr. Prakt. Med. Ny Raekke 2005, 125, 1004–1006. [Google Scholar]
- Sanchez-Niño, M.D.; Sanz, A.B.; Carrasco, S.; Saleem, M.A.; Mathieson, P.W.; Valdivielso, J.M.; Ruiz-Ortega, M.; Egido, J.; Ortiz, A. Globotriaosylsphingosine actions on human glomerular podocytes: Implications for Fabry nephropathy. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2011, 26, 1797–1802. [Google Scholar] [CrossRef] [Green Version]
- Branton, M.H.; Schiffmann, R.; Sabnis, S.G.; Murray, G.J.; Quirk, J.M.; Altarescu, G.; Goldfarb, L.; Brady, R.O.; Balow, J.E.; Austin Iii, H.A.; et al. Natural history of Fabry renal disease: Influence of alpha-galactosidase A activity and genetic mutations on clinical course. Medicine (Baltimore) 2002, 81, 122–138. [Google Scholar] [CrossRef]
- MacDermot, K.D.; Holmes, A.; Miners, A.H. Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 98 hemizygous males. J. Med. Genet. 2001, 38, 750–760. [Google Scholar] [CrossRef] [Green Version]
- Mehta, A.; Ricci, R.; Widmer, U.; Dehout, F.; Garcia de Lorenzo, A.; Kampmann, C.; Linhart, A.; Sunder-Plassmann, G.; Ries, M.; Beck, M. Fabry disease defined: Baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. Eur. J. Clin. Invest. 2004, 34, 236–242. [Google Scholar] [CrossRef]
- Waldek, S.; Patel, M.R.; Banikazemi, M.; Lemay, R.; Lee, P. Life expectancy and cause of death in males and females with Fabry disease: Findings from the Fabry Registry. Genet. Med. Off. J. Am. Coll. Med. Genet. 2009, 11, 790–796. [Google Scholar] [CrossRef] [Green Version]
- Sims, K.; Politei, J.; Banikazemi, M.; Lee, P. Stroke in Fabry Disease Frequently Occurs Before Diagnosis and in the Absence of Other Clinical Events: Natural History Data From the Fabry Registry. Stroke 2009, 40, 788–794. [Google Scholar] [CrossRef] [Green Version]
- Manara, R.; Carlier, R.Y.; Righetto, S.; Citton, V.; Locatelli, G.; Colas, F.; Ermani, M.; Germain, D.P.; Burlina, A. Basilar Artery Changes in Fabry Disease. AJNR Am. J. Neuroradiol. 2017, 38, 531–536. [Google Scholar] [CrossRef] [Green Version]
- Fellgiebel, A.; Müller, M.J.; Ginsberg, L. CNS manifestations of Fabry’s disease. Lancet Neurol. 2006, 5, 791–795. [Google Scholar] [CrossRef]
- Moore, D.F.; Scott, L.T.; Gladwin, M.T.; Altarescu, G.; Kaneski, C.; Suzuki, K.; Pease-Fye, M.; Ferri, R.; Brady, R.O.; Herscovitch, P.; et al. Regional cerebral hyperperfusion and nitric oxide pathway dysregulation in Fabry disease: Reversal by enzyme replacement therapy. Circulation 2001, 104, 1506–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitsias, P.; Levine, S.R. Cerebrovascular complications of Fabry’s disease. Ann. Neurol. 1996, 40, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Fellgiebel, A.; Mazanek, M.; Whybra, C.; Beck, M.; Hartung, R.; Müller, K.-M.; Scheurich, A.; Dellani, P.R.; Stoeter, P.; Müller, M.J. Pattern of microstructural brain tissue alterations in Fabry disease: A diffusion–tensor imaging study. J. Neurol. 2006, 253, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Kolodny, E.; Fellgiebel, A.; Hilz, M.J.; Sims, K.; Caruso, P.; Phan, T.G.; Politei, J.; Manara, R.; Burlina, A. Cerebrovascular involvement in Fabry disease: Current status of knowledge. Stroke 2015, 46, 302–313. [Google Scholar] [CrossRef]
- Moore, D.F.; Altarescu, G.; Barker, W.C.; Patronas, N.J.; Herscovitch, P.; Schiffmann, R. White matter lesions in Fabry disease occur in ‘prior’ selectively hypometabolic and hyperperfused brain regions. Brain Res. Bull. 2003, 62, 231–240. [Google Scholar] [CrossRef]
- Pantoni, L.; Garcia, J.H. Pathogenesis of leukoaraiosis: A review. Stroke 1997, 28, 652–659. [Google Scholar] [CrossRef]
- Germain, D.P.; Charrow, J.; Desnick, R.J.; Guffon, N.; Kempf, J.; Lachmann, R.H.; Lemay, R.; Linthorst, G.E.; Packman, S.; Scott, C.R.; et al. Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J. Med. Genet. 2015, 52, 353–358. [Google Scholar] [CrossRef]
- CADTH Common Drug Reviews. In Clinical Review Report: Migalastat (Galafold): (Amicus Therapeutics): Indication: Fabry Disease; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2018.
- Debette, S.; Markus, H.S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ 2010, 341, c3666. [Google Scholar] [CrossRef] [Green Version]
- Hughes, D.A.; Nicholls, K.; Shankar, S.P.; Sunder-Plassmann, G.; Koeller, D.; Nedd, K.; Vockley, G.; Hamazaki, T.; Lachmann, R.; Ohashi, T.; et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J. Med. Genet. 2017, 54, 288–296. [Google Scholar] [CrossRef]
- Chimenti, C.; Nencini, P.; Pieruzzi, F.; Feriozzi, S.; Mignani, R.; Pieroni, M.; Pisani, A.; GALA Working Group. The GALA project: Practical recommendations for the use of migalastat in clinical practice on the basis of a structured survey among Italian experts. Orphanet J. Rare Dis. 2020, 15, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, D.F.; Kaneski, C.R.; Askari, H.; Schiffmann, R. The cerebral vasculopathy of Fabry disease. J. Neurol. Sci. 2007, 257, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.J.; McKie, V.C.; Carl, E.M.; Nichols, F.T.; Perry, R.; Brock, K.; McKie, K.; Figueroa, R.; Litaker, M.; Weiner, S.; et al. Long-term stroke risk in children with sickle cell disease screened with transcranial Doppler. Ann. Neurol. 1997, 42, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Lysakowski, C.; Walder, B.; Costanza, M.C.; Tramèr, M.R. Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: A systematic review. Stroke 2001, 32, 2292–2298. [Google Scholar] [CrossRef] [PubMed]
- Demchuk, A.M.; Christou, I.; Wein, T.H.; Felberg, R.A.; Malkoff, M.; Grotta, J.C.; Alexandrov, A.V. Accuracy and criteria for localizing arterial occlusion with transcranial Doppler. J. Neuroimaging Off. J. Am. Soc. Neuroimaging 2000, 10, 1–12. [Google Scholar] [CrossRef]
- Alexandrov, A.V.; Grotta, J.C. Arterial reocclusion in stroke patients treated with intravenous tissue plasminogen activator. Neurology 2002, 59, 862–867. [Google Scholar] [CrossRef]
- Vinciguerra, L.; Bösel, J. Noninvasive Neuromonitoring: Current Utility in Subarachnoid Hemorrhage, Traumatic Brain Injury, and Stroke. Neurocrit. Care 2017, 27, 122–140. [Google Scholar] [CrossRef]
- Ringelstein, E.B.; Droste, D.W.; Babikian, V.L.; Evans, D.H.; Grosset, D.G.; Kaps, M.; Markus, H.S.; Russell, D.; Siebler, M. Consensus on microembolus detection by TCD. International Consensus Group on Microembolus Detection. Stroke 1998, 29, 725–729. [Google Scholar] [CrossRef] [Green Version]
- Vinciguerra, L.; Lanza, G.; Puglisi, V.; Pennisi, M.; Cantone, M.; Bramanti, A.; Pennisi, G.; Bella, R. Transcranial Doppler ultrasound in vascular cognitive impairment-no dementia. PLoS ONE 2019, 14, e0216162. [Google Scholar] [CrossRef] [Green Version]
- Puglisi, V.; Bramanti, A.; Lanza, G.; Cantone, M.; Vinciguerra, L.; Pennisi, M.; Bonanno, L.; Pennisi, G.; Bella, R. Impaired Cerebral Haemodynamics in Vascular Depression: Insights From Transcranial Doppler Ultrasonography. Front. Psychiatry 2018, 9, 316. [Google Scholar] [CrossRef] [Green Version]
- Panerai, R.B. Assessment of cerebral pressure autoregulation in humans--A review of measurement methods. Physiol. Meas. 1998, 19, 305–338. [Google Scholar] [CrossRef] [PubMed]
- Aaslid, R.; Lindegaard, K.F.; Sorteberg, W.; Nornes, H. Cerebral autoregulation dynamics in humans. Stroke 1989, 20, 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ringelstein, E.B.; Sievers, C.; Ecker, S.; Schneider, P.A.; Otis, S.M. Noninvasive assessment of CO2-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions. Stroke 1988, 19, 963–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ficzere, A.; Valikovics, A.; Fülesdi, B.; Juhász, A.; Czuriga, I.; Csiba, L. Cerebrovascular reactivity in hypertensive patients: A transcranial Doppler study. J. Clin. Ultrasound JCU 1997, 25, 383–389. [Google Scholar] [CrossRef]
- Dahl, A.; Russell, D.; Nyberg-Hansen, R.; Rootwelt, K.; Mowinckel, P. Simultaneous Assessment of Vasoreactivity Using Transcranial Doppler Ultrasound and Cerebral Blood Flow in Healthy Subjects. J. Cereb. Blood Flow Metab. 1994, 14, 974–981. [Google Scholar] [CrossRef] [Green Version]
- Widder, B. Use of breath holding for evaluating cerebrovascular reserve capacity. Stroke 1992, 23, 1680–1681. [Google Scholar] [CrossRef] [Green Version]
- Settakis, G.; Lengyel, A.; Molnár, C.; Bereczki, D.; Csiba, L.; Fülesdi, B. Transcranial Doppler study of the cerebral hemodynamic changes during breath-holding and hyperventilation tests. J. Neuroimaging Off. J. Am. Soc. Neuroimaging 2002, 12, 252–258. [Google Scholar] [CrossRef]
- Fülesdi, B.; Limburg, M.; Bereczki, D.; Michels, R.P.; Neuwirth, G.; Legemate, D.; Valikovics, A.; Csiba, L. Impairment of cerebrovascular reactivity in long-term type 1 diabetes. Diabetes 1997, 46, 1840–1845. [Google Scholar] [CrossRef]
- Azevedo, E.; Mendes, A.; Seixas, D.; Santos, R.; Castro, P.; Ayres-Basto, M.; Rosengarten, B.; Oliveira, J.P. Functional Transcranial Doppler: Presymptomatic Changes in Fabry Disease. Eur. Neurol. 2012, 67, 331–337. [Google Scholar] [CrossRef]
- Hilz, M.J.; Kolodny, E.H.; Brys, M.; Stemper, B.; Haendl, T.; Marthol, H. Reduced cerebral blood flow velocity and impaired cerebral autoregulation in patients with Fabry disease. J. Neurol. 2004, 251, 564–570. [Google Scholar] [CrossRef]
- Moore, D.F.; Altarescu, G.; Ling, G.S.F.; Jeffries, N.; Frei, K.P.; Weibel, T.; Charria-Ortiz, G.; Ferri, R.; Arai, A.E.; Brady, R.O.; et al. Elevated Cerebral Blood Flow Velocities in Fabry Disease With Reversal After Enzyme Replacement. Stroke 2002, 33, 525–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segura, T.; Ayo-Martín, O.; Gómez-Fernandez, I.; Andrés, C.; Barba, M.A.; Vivancos, J. Cerebral hemodynamics and endothelial function in patients with Fabry disease. BMC Neurol. 2013, 13, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Üçeyler, N.; He, L.; Kahn, A.-K.; Breunig, F.; Müllges, W.; Sommer, C. Cerebral Blood Flow in Patients With Fabry Disease as Measured by Doppler Sonography Is Not Different From That in Healthy Individuals and Is Unaffected by Treatment. J. Ultrasound Med. 2012, 31, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Spada, M.; Pagliardini, S.; Yasuda, M.; Tukel, T.; Thiagarajan, G.; Sakuraba, H.; Ponzone, A.; Desnick, R.J. High Incidence of Later-Onset Fabry Disease Revealed by Newborn Screening. Am. J. Hum. Genet. 2006, 79, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukas, J.; Giese, A.-K.; Markoff, A.; Grittner, U.; Kolodny, E.; Mascher, H.; Lackner, K.J.; Meyer, W.; Wree, P.; Saviouk, V.; et al. Functional Characterisation of Alpha-Galactosidase A Mutations as a Basis for a New Classification System in Fabry Disease. PLoS Genet. 2013, 9, e1003632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauth, L.; Kerstens, J.; Yperzeele, L.; Eyskens, F.; Parizel, P.M.; Willekens, B. Galactosidase Alpha p.A143T Variant Fabry Disease May Result in a Phenotype With Multifocal Microvascular Cerebral Involvement at a Young Age. Front. Neurol. 2018, 9, 336. [Google Scholar] [CrossRef] [Green Version]
- Terryn, W.; Vanholder, R.; Hemelsoet, D.; Leroy, B.P.; Van Biesen, W.; De Schoenmakere, G.; Wuyts, B.; Claes, K.; De Backer, J.; De Paepe, G.; et al. Questioning the Pathogenic Role of the GLA p.Ala143Thr “Mutation” in Fabry Disease: Implications for Screening Studies and ERT. In JIMD Reports-Case and Research Reports, 2012/5; Zschocke, J., Gibson, K.M., Brown, G., Morava, E., Peters, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 8, pp. 101–108. ISBN 978-3-642-33432-0. [Google Scholar]
- Rolfs, A.; Fazekas, F.; Grittner, U.; Dichgans, M.; Martus, P.; Holzhausen, M.; Böttcher, T.; Heuschmann, P.U.; Tatlisumak, T.; Tanislav, C.; et al. Acute Cerebrovascular Disease in the Young: The Stroke in Young Fabry Patients Study. Stroke 2013, 44, 340–349. [Google Scholar] [CrossRef] [Green Version]
- Lenders, M.; Duning, T.; Schelleckes, M.; Schmitz, B.; Stander, S.; Rolfs, A.; Brand, S.-M.; Brand, E. Multifocal White Matter Lesions Associated with the D313Y Mutation of the a-Galactosidase A Gene. PLoS ONE 2013, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Polo, G.; Burlina, A.P.; Kolamunnage, T.B.; Zampieri, M.; Dionisi-Vici, C.; Strisciuglio, P.; Zaninotto, M.; Plebani, M.; Burlina, A.B. Diagnosis of sphingolipidoses: A new simultaneous measurement of lysosphingolipids by LC-MS/MS. Clin. Chem. Lab. Med. 2017, 55, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Gosling, R.G.; King, D.H. Arterial Assessment by Doppler-shift Ultrasound. Proc. R. Soc. Med. 1974, 67, 447–449. [Google Scholar]
- D’Andrea, A.; Conte, M.; Cavallaro, M.; Scarafile, R.; Riegler, L.; Cocchia, R.; Pezzullo, E.; Carbone, A.; Natale, F.; Santoro, G.; et al. Transcranial Doppler ultrasonography: From methodology to major clinical applications. World J. Cardiol. 2016, 8, 383–400. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Voges, M.; Piepgras, U.; Schimrigk, K. Assessment of cerebral vasomotor reactivity by transcranial Doppler ultrasound and breath-holding. A comparison with acetazolamide as vasodilatory stimulus. Stroke 1995, 26, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Markus, H.S.; Harrison, M.J. Estimation of cerebrovascular reactivity using transcranial Doppler, including the use of breath-holding as the vasodilatory stimulus. Stroke 1992, 23, 668–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naqvi, J.; Yap, K.H.; Ahmad, G.; Ghosh, J. Transcranial Doppler Ultrasound: A Review of the Physical Principles and Major Applications in Critical Care. Int. J. Vasc. Med. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Nicoletto, H.A.; Burkman, M.H. Transcranial Doppler series part III: Interpretation. Am. J. Electroneurodiagnostic Technol. 2009, 49, 244–259. [Google Scholar] [CrossRef]
- D’Andrea, A.; Conte, M.; Scarafile, R.; Riegler, L.; Cocchia, R.; Pezzullo, E.; Cavallaro, M.; Carbone, A.; Natale, F.; Russo, M.G.; et al. Transcranial Doppler Ultrasound: Physical Principles and Principal Applications in Neurocritical Care Unit. J. Cardiovasc. Echogr. 2016, 26, 28–41. [Google Scholar] [CrossRef] [Green Version]
- White, H.; Venkatesh, B. Applications of transcranial Doppler in the ICU: A review. Intensive Care Med. 2006, 32, 981–994. [Google Scholar] [CrossRef]
- Moore, D.F.; Altarescu, G.; Herscovitch, P.; Schiffmann, R. Enzyme replacement reverses abnormal cerebrovascular responses in Fabry disease. BMC Neurol. 2002, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.S.; Lin, K.L.; Wang, H.S.; Hsia, S.H.; Lin, T.Y.; Lin, P.Y. Transcranial Doppler Sonography in the Early Stage of Critical Enteroviral Infection. J. Ultrasound Med. 2003, 22, 1061–1066. [Google Scholar] [CrossRef]
- Rolfs, A.; Böttcher, T.; Zschiesche, M.; Morris, P.; Winchester, B.; Bauer, P.; Walter, U.; Mix, E.; Löhr, M.; Harzer, K.; et al. Prevalence of Fabry disease in patients with cryptogenic stroke: A prospective study. Lancet 2005, 366, 1794–1796. [Google Scholar] [CrossRef]
- Fellgiebel, A.; Keller, I.; Marin, D.; Muller, M.J.; Schermuly, I.; Yakushev, I.; Albrecht, J.; Bellhauser, H.; Kinateder, M.; Beck, M.; et al. Diagnostic utility of different MRI and MR angiography measures in Fabry disease. Neurology 2009, 72, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Fellgiebel, A.; Keller, I.; Martus, P.; Ropele, S.; Yakushev, I.; Böttcher, T.; Fazekas, F.; Rolfs, A. Basilar Artery Diameter Is a Potential Screening Tool for Fabry Disease in Young Stroke Patients. Cerebrovasc. Dis. 2011, 31, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Yagita, Y.; Sakai, N.; Miwa, K.; Ohara, N.; Tanaka, M.; Sakaguchi, M.; Kitagawa, K.; Mochizuki, H. Magnetic Resonance Imaging Findings Related to Stroke Risk in Japanese Patients With Fabry Disease. Stroke 2019, 50, 2571–2573. [Google Scholar] [CrossRef] [PubMed]
- Miwa, K.; Yagita, Y.; Sakaguchi, M.; Kitagawa, K.; Sakai, N.; Mochizuki, H. Effect of Enzyme Replacement Therapy on Basilar Artery Diameter in Male Patients With Fabry Disease. Stroke 2019, 50, 1010–1012. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.F.; Herscovitch, P.; Schiffmann, R. Selective arterial distribution of cerebral hyperperfusion in Fabry disease. J. Neuroimaging Off. J. Am. Soc. Neuroimaging 2001, 11, 303–307. [Google Scholar] [CrossRef]
- Altarescu, G.; Moore, D.F.; Pursley, R.; Campia, U.; Goldstein, S.; Bryant, M.; Panza, J.A.; Schiffmann, R. Enhanced endothelium-dependent vasodilation in Fabry disease. Stroke 2001, 32, 1559–1562. [Google Scholar] [CrossRef] [Green Version]
- Cocozza, S.; Pontillo, G.; Quarantelli, M.; Saccà, F.; Riccio, E.; Costabile, T.; Olivo, G.; Brescia Morra, V.; Pisani, A.; Brunetti, A.; et al. Default mode network modifications in Fabry disease: A resting-state fMRI study with structural correlations. Hum. Brain Mapp. 2018, 39, 1755–1764. [Google Scholar] [CrossRef] [Green Version]
- Barrett, K.M.; Ackerman, R.H.; Gahn, G.; Romero, J.M.; Candia, M. Basilar and Middle Cerebral Artery Reserve: A Comparative Study Using Transcranial Doppler and Breath-Holding Techniques. Stroke 2001, 32, 2793–2796. [Google Scholar] [CrossRef] [Green Version]
- Garbin, L.; Habetswallner, F.; Clivati, A. Vascular reactivity in middle cerebral artery and basilar artery by transcranial Doppler in normals subjects during hypoxia. Ital. J. Neurol. Sci. 1997, 18, 135–137. [Google Scholar] [CrossRef]
Variable | aFD (n = 30) | Controls (n = 28) | Fisher’s Exact Test |
---|---|---|---|
n (%) | n (%) | p | |
Age, Years * | 37.97 ± 11.95 | 39.0 ± 10.31 | NS |
Sex, Females | 19 (63.3%) | 16 (57.1%) | NS |
Dyslipidemia | 2 (6.6%) | 1 (3.6%) | NS |
Former Smokers | 1 (3.3%) | 2 (7.1%) | NS |
TCD Index | aFD | Controls | Student’s t-Test | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | t Value | p | |
MCA PSV | 93.27 | 19.08 | 92.45 | 18.34 | 0.167 | 0.868 |
MCA MBFV | 62.55 | 13.15 | 61.39 | 10.79 | 0.363 | 0.718 |
MCA EDV | 42.80 | 9.72 | 42.95 | 11.58 | −0.054 | 0.957 |
MCA PI | 0.81 | 0.09 | 0.80 | 0.07 | 0.791 | 0.432 |
MCA RI | 0.55 | 0.04 | 0.55 | 0.04 | 0.018 | 0.985 |
aMCA PSV | 102.42 | 20.38 | 100.45 | 18.15 | 0.388 | 0.700 |
aMCA MBFV | 70.36 | 16.13 | 69.70 | 13.18 | 0.171 | 0.865 |
aMCA EDV | 49.60 | 12.08 | 50.14 | 12.72 | −0.168 | 0.867 |
aMCA PI | 0.75 | 0.10 | 0.76 | 0.10 | −0.135 | 0.893 |
aMCA RI | 0.53 | 0.06 | 0.53 | 0.06 | −0.020 | 0.984 |
MCA BHI | 0.43 | 0.52 | 0.46 | 0.38 | −0.179 | 0.859 |
BA PSV | 66.40 | 15.99 | 58.93 | 13.63 | 1.909 | 0.061 |
BA MBFV | 44.55 | 11.31 | 38.75 | 8.93 | 2.157 | 0.035 |
BA EDV | 30.20 | 8.54 | 25.61 | 9.86 | 1.901 | 0.062 |
BA PI | 0.79 | 0.13 | 0.86 | 0.15 | −1.979 | 0.053 |
BA RI | 0.53 | 0.06 | 0.61 | 0.08 | −3.978 | 0.0002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vagli, C.; Fisicaro, F.; Vinciguerra, L.; Puglisi, V.; Rodolico, M.S.; Giordano, A.; Ferri, R.; Lanza, G.; Bella, R. Cerebral Hemodynamic Changes to Transcranial Doppler in Asymptomatic Patients with Fabry’s Disease. Brain Sci. 2020, 10, 546. https://doi.org/10.3390/brainsci10080546
Vagli C, Fisicaro F, Vinciguerra L, Puglisi V, Rodolico MS, Giordano A, Ferri R, Lanza G, Bella R. Cerebral Hemodynamic Changes to Transcranial Doppler in Asymptomatic Patients with Fabry’s Disease. Brain Sciences. 2020; 10(8):546. https://doi.org/10.3390/brainsci10080546
Chicago/Turabian StyleVagli, Carla, Francesco Fisicaro, Luisa Vinciguerra, Valentina Puglisi, Margherita Stefania Rodolico, Antonello Giordano, Raffaele Ferri, Giuseppe Lanza, and Rita Bella. 2020. "Cerebral Hemodynamic Changes to Transcranial Doppler in Asymptomatic Patients with Fabry’s Disease" Brain Sciences 10, no. 8: 546. https://doi.org/10.3390/brainsci10080546
APA StyleVagli, C., Fisicaro, F., Vinciguerra, L., Puglisi, V., Rodolico, M. S., Giordano, A., Ferri, R., Lanza, G., & Bella, R. (2020). Cerebral Hemodynamic Changes to Transcranial Doppler in Asymptomatic Patients with Fabry’s Disease. Brain Sciences, 10(8), 546. https://doi.org/10.3390/brainsci10080546