The Effects of Gradual Change in Head Positioning on the Relationship between Systemic and Cerebral Haemodynamic Parameters in Healthy Controls and Acute Ischaemic Stroke Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Statistical Analysis
3. Results
3.1. Healthy Controls
3.2. AIS Patients
3.2.1. Effects of GHP on MABPv and CBFVv
3.2.2. Relationship between CBFVv and MABPv
4. Discussion
4.1. Main Findings
4.2. Influence of Head Position on BP Parameters
4.2.1. Healthy Controls
4.2.2. AIS Patients
4.3. Influence of Head Position on CBFV Parameters
4.3.1. Healthy Controls
4.3.2. AIS Patients
4.4. Inter-Visit Variability
4.4.1. Healthy Controls
4.4.2. AIS Patients
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Statement of Ethics
References
- Musuka, T.D.; Wilton, S.B.; Traboulsi, M.; Hill, M.D. Diagnosis and management of acute ischaemic stroke: Speed is critical. Can. Med. Assoc. J. 2015, 187, 887–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minhas, J.S.; Robinson, T.G. Latest developments in clinical stroke care. J. R. Coll. Phys. Edinb. 2017, 47, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, G.; Kemnitz, C.; Tortora, G. Anatomy and Physiology: From Science to Life; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Tsivgoulis, G.; Alexandrov, A. Cerebral Haemodynamics in Acute Stroke: Pathophysiology and Clinical Implications. J. Vasc. Interv. Neurol. 2008, 1, 65–69. [Google Scholar] [PubMed]
- Castro, P.; Azevedo, E.; Sorond, F. Cerebral Autoregulation in Stroke. Curr. Atheroscler. Rep. 2018, 20, 37. [Google Scholar] [CrossRef] [PubMed]
- Lassen, N.A. Cerebral Blood Flow and Oxygen Consumption in Man. Physiol. Rev. 1959, 39, 183–238. [Google Scholar] [CrossRef] [Green Version]
- Claassen, J. The plateau phase is a slippery slope: Raising blood pressure may lower brain perfusion. J. Physiol. 2016, 594, 2783. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Tseng, B.Y.; Khan, M.A.; Tarumi, T.; Hill, C.; Mirshams, N.; Hodics, T.M.; Hynan, L.S.; Zhang, R. Individual variability of cerebral autoregulation, posterior cerebral circulation and white matter hyperintensity. J. Physiol. 2016, 594, 3141–3155. [Google Scholar] [CrossRef]
- Meng, L.; Gelb, A.W. Regulation of Cerebral Autoregulation by Carbon Dioxide. Anesthesiology 2015, 122, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Aaslid, R.; Lindegaard, K.F.; Sorteberg, W.; Nornes, H. Cerebral autoregulation dynamics in humans. Stroke 1989, 20, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Garrett, Z.K.; Pearson, J.; Subudhi, A.W. Postural effects on cerebral blood flow and autoregulation. Physiol. Rep. 2017, 5, e13150. [Google Scholar] [CrossRef]
- Eames, P.J.; Blake, M.J.; Dawson, S.L.; Panerai, R.B.; Potter, J.F. Dynamic cerebral autoregulation and beat to beat blood pressure control are impaired in acute ischaemic stroke. J. Neurol. Neurosurg. Psychiatry 2002, 72, 467–472. [Google Scholar] [PubMed]
- Robinson, T.G.; James, M.; Youde, J.; Panerai, R.; Potter, J. Cardiac baroreceptor sensitivity is impaired after acute stroke. Stroke 1997, 28, 1671–1676. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Xiong, L.; Lin, W.; Han, J.; Chen, X.; Leung, T.; Soo, Y.; Wong, L. External Counterpulsation Reduced Beat-to-Beat Blood Pressure Variability When Augmenting Blood Pressure and Cerebral Blood Flow in Ischaemic Stroke. J. Clin. Neurol. 2016, 12, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Favilla, C.; Mesquita, R.; Mullen, M.; Durduran, T.; Lu, X.; Kim, M.; Minkoff, D.; Kasner, S.; Greenberg, J.; Yodh, A.; et al. Optical Bedside Monitoring of Cerebral Blood Flow in Acute Ischaemic Stroke Patients During Head-of-Bed Manipulation. Stroke 2014, 45, 1269–1274. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Venturelli, P.; Arima, H.; Lavados, P.; Brunser, A.; Peng, B.; Cui, L.; Song, L.; Billot, L.; Boaden, E.; Hackett, M.L.; et al. Head Position in Stroke Trial (HeadPoST)–sitting-up vs lying-flat positioning of patients with acute stroke: Study protocol for a cluster randomised controlled trial. Trials 2015, 16, 256. [Google Scholar] [CrossRef] [Green Version]
- Minhas, J.S.; Wang, X.; Lavados, P.M.; Moullaali, T.J.; Arima, H.; Billot, L.; Hackett, M.L.; Olavarria, V.V.; Middleton, S.; Pontes-Neto, O.; et al. Blood pressure variability and outcome in acute ischaemic and hemorrhagic stroke: A post hoc analysis of the HeadPoST study. J. Hum. Hypertens. 2019, 33, 411–418. [Google Scholar] [CrossRef]
- Lam, M.Y.; Haunton, V.J.; Robinson, T.G.; Panerai, R.B. Does gradual change in head positioning affect cerebrovascular physiology? Physiol. Rep. 2018, 6, e13603. [Google Scholar] [CrossRef]
- de-Lima-Oliveira, M.; Salinet, A.S.M.; Nogueira, R.C.; de Azevedo, D.S.; Paiva, W.S.; Teixeira, M.J.; Bor-Seng-Shu, E. Intracranial Hypertension and Cerebral Autoregulation: A Systematic Review and Meta-Analysis. World Neurosurg. 2018, 113, 110–124. [Google Scholar] [CrossRef]
- Nivethitha, L.; Mooventhan, A.; Manjunath, N.K.; Bathala, L.; Sharma, V.K. Cerebrovascular hemodynamics during pranayama techniques. J. Neurosci. Rural Pract. 2017, 8, 060–063. [Google Scholar] [CrossRef]
- Cicolini, G.; Pizzi, C.; Palma, E.; Bucci, M.; Schioppa, F.; Mezzetti, A.; Manzoli, L. Differences in blood pressure by body position (supine, Fowler’s, and sitting) in hypertensive subjects. Am. J. Hypertens. 2011, 24, 1073–1079. [Google Scholar] [CrossRef]
- Eser, I.; Khorshid, L.; Yapucu Güneş, Ü.; Demir, Y. The effect of different body positions on blood pressure. J. Clin. Nurs. 2007, 16, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.; Newnham, D.; Petrie, J.C.; Lovell, H.G. Influence of arm position on measurement of blood pressure. BMJ 1984, 288, 1574–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardo, C.J.; Chambless, L.E.; Light, K.C.; Rosamond, W.D.; Sharrett, A.R.; Tell, G.S.; Heiss, G. Descriptive Epidemiology of Blood Pressure Response to Change in Body Position. Hypertension 1999, 33, 1123–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minhas, J.S.; Panerai, R.B.; Robinson, T.G. Modelling the cerebral haemodynamic response in the physiological range of PaCO2. Physiol. Meas. 2018, 39, 065001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manning, L.S.; Rothwell, P.M.; Potter, J.F.; Robinson, T.G. Prognostic Significance of Short-Term Blood Pressure Variability in Acute Stroke. Stroke 2015, 46, 2482–2490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothwell, P.M. Limitations of the usual blood-pressure hypothesis and importance of variability, instability, and episodic hypertension. Lancet 2010, 375, 938–948. [Google Scholar] [CrossRef]
- Lam, M.Y.; Haunton, V.J.; Robinson, T.G.; Panerai, R.B. Dynamic cerebral autoregulation measurement using rapid changes in head positioning: Experiences in acute ischemic stroke and healthy control populations. Am. J. Physiol. Circ. Physiol. 2019, 316, H673–H683. [Google Scholar] [CrossRef] [Green Version]
- Mahdi, A.; Nikolic, D.; Birch, A.A.; Olufsen, M.S.; Panerai, R.B.; Simpson, D.M.; Payne, S.J. Increased blood pressure variability upon standing up improves reproducibility of cerebral autoregulation indices. Med. Eng. Phys. 2017, 47, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Rosner, M.J.; Coley, I.B. Cerebral perfusion pressure, intracranial pressure, and head elevation. J. Neurosurg. 1986, 65, 636–641. [Google Scholar] [CrossRef]
- Schwarz, S.; Georgiadis, D.; Aschoff, A.; Schwab, S. Effects of body position on intracranial pressure and cerebral perfusion in patients with large hemispheric stroke. Stroke 2002, 33, 497–501. [Google Scholar] [CrossRef] [Green Version]
- Sprangers, R.L.; Wesseling, K.H.; Imholz, A.L.; Imholz, B.P.; Wieling, W. Initial blood pressure fall on stand up and exercise explained by changes in total peripheral resistance. J. Appl. Physiol. 1991, 70, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G.-H.; Franke, R.; Von Helden, A.; Unterberg, A.; Lanksch, W. Effect of Head Elevation on Intracranial Pressure, Cerebral Perfusion Pressure, and Cerebrovenous Oxygen Saturation. Adv. Neurosurg. 1993, 21, 165–168. [Google Scholar] [CrossRef]
- Panerai, R.B.; Dawson, S.L.; Eames, P.; Potter, J.F. Cerebral blood flow velocity response to induced and spontaneous sudden changes in arterial blood pressure. Am. J. Physiol. Circ. Physiol. 2001, 280, H2162–H2174. [Google Scholar] [CrossRef] [PubMed]
- Immink, R.V.; van Montfrans, G.A.; Stam, J.; Karemaker, J.M.; Diamant, M.; van Lieshout, J.J. Dynamic Cerebral Autoregulation in Acute Lacunar and Middle Cerebral Artery Territory Ischaemic Stroke. Stroke 2005, 36, 2595–2600. [Google Scholar] [CrossRef]
- Aries, M.J.H.; Elting, J.W.; De Keyser, J.; Kremer, B.P.; Vroomen, P.C. Cerebral Autoregulation in Stroke: A Review of Transcranial Doppler Studies. Stroke 2010, 41, 2697–2704. [Google Scholar] [CrossRef]
- Reinhard, M.; Wihler, C.; Roth, M.; Harloff, A.; Niesen, W.; Timmer, J.; Weiller, C.; Hetzel, A. Cerebral Autoregulation Dynamics in Acute Ischaemic Stroke after rtPA Thrombolysis. Cerebrovasc. Dis. 2008, 26, 147–155. [Google Scholar] [CrossRef]
- Reinhard, M.; Rutsch, S.; Lambeck, J.; Wihler, C.; Czosnyka, M.; Weiller, C.; Hetzel, A. Dynamic cerebral autoregulation associates with infarct size and outcome after ischaemic stroke. Acta Neurol. Scand. 2012, 125, 156–162. [Google Scholar] [CrossRef]
- Reinhard, M.; Roth, M.; Guschlbauer, B.; Harloff, A.; Timmer, J.; Czosnyka, M.; Hetzel, A. Dynamic Cerebral Autoregulation in Acute Ischaemic Stroke Assessed From Spontaneous Blood Pressure Fluctuations. Stroke 2005, 36, 1684–1689. [Google Scholar] [CrossRef] [Green Version]
- Petersen, N.H.; Ortega-Gutierrez, S.; Reccius, A.; Masurkar, A.; Huang, A.; Marshall, R.S. Dynamic Cerebral Autoregulation Is Transiently Impaired for One Week after Large-Vessel Acute Ischaemic Stroke. Cerebrovasc. Dis. 2015, 39, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Brodie, F.G.; Atkins, E.R.; Robinson, T.G.; Panerai, R.B. Reliability of dynamic cerebral autoregulation measurement using spontaneous fluctuations in blood pressure. Clin. Sci. 2009, 116, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Coverdale, N.S.; Gati, J.S.; Opalevych, O.; Perrotta, A.; Shoemaker, J.K. Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia. J. Appl. Physiol. 2014, 117, 1090–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minhas, J.S.; Rook, W.; Panerai, R.B.; Hoiland, R.L.; Ainslie, P.N.; Thompson, J.P.; Mistri, A.K.; Robinson, T.G. Pathophysiological and clinical considerations in the perioperative care of patients with a previous ischaemic stroke: A multidisciplinary narrative review. Br. J. Anaesth. 2020, 124, 183–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heckmann, J.G.; Hilz, M.J.; Hagler, H.; Mück-Weymann, M.; Neundörfer, B. Transcranial Doppler sonography during acute 80 degrees head-down tilt (HDT) for the assessment of cerebral autoregulation in humans. Neurol. Res. 1999, 21, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Katsanos, A.H.; Kargiotis, O.; Safouris, A.; Psychogios, K.; Magoufis, G.; Tsivgoulis, G. Letter to the Editor for the article “Flat-head positioning increases cerebral blood flow in anterior circulation acute ischemic stroke: A cluster randomized phase IIb trial.”. Int. J. Stroke 2019, 14, NP7. [Google Scholar] [CrossRef] [PubMed]
Healthy Controls | AIS Patients | |
---|---|---|
Number of Participants, n | 16 | 15 |
Mean Age, years | 57 ± 16 | 69 ± 9 |
Sex (Men:Women), n | 8:8 | 7:8 |
Handedness (Right:Left), n | 15:1 | 14:1 |
Mean BMI, kg/m2 | 24 ± 4 | 27 ± 5 |
Smoker, n | ||
Yes | 1 | 5 |
Ex | 2 | 2 |
No | 13 | 8 |
Past Medical History, n | ||
Hypertension | 5 | 8 |
Hypercholesterolemia Diabetes | 1 - | 6 2 |
Ipsilateral ICA Stenosis † | - | 2 |
Bilateral ICA Stenosis ‡ | - | 1 |
NIHSS | ||
Visit 1 | - | 5 (3–5) |
Visit 2 | - | 2 (1–3) |
Visit 3 | - | 0 (0–1) |
mRS before visit | ||
Visit 1 | - | 0 (0) |
Visit 2 | - | 1 (0–2) |
Visit 3 | - | 0 (0–1) |
Visit 1 | Visit 2 | |||||||
---|---|---|---|---|---|---|---|---|
Baseline (0°) | Upright (≥30°) | Baseline (0°) | Upright (≥30°) | |||||
Non-Dominant | Dominant | Non-Dominant | Dominant | Non-Dominant | Dominant | Non-Dominant | Dominant | |
Mean MABP (mmHg) | 89.09 (12.07) | 81.75 (8.05) | 89.61 (11.35) | 79.78 (11.37) | ||||
Mean CBFV (cms−1) | 53.03 (12.58) | 53.92 (15.01) | 49.67 (13.52) | 52.44 (14.44) | 51.34 (12.65) | 52.37 (12.25) | 50.02 (13.31) | 49.43 (12.96) |
SD MABP (mmHg) | 3.13 * (1.13) | 4.04 * (1.75) | 3.55 * (1.45) | 4.07 * (1.51) | ||||
SD CBFV (cms−1) | 3.31 (1.00) | 3.35 (1.05) | 3.32 (0.84) | 3.67 (1.09) | 3.06 * (0.81) | 2.96 † (0.74) | 3.61 * (1.27) | 3.35 † (1.01) |
CoV MABP (%) | 3.42 * (1.06) | 4.92 * (2.09) | 3.90 * (1.46) | 5.04 * (1.76) | ||||
CoV CBFV (%) | 6.40 (1.98) | 6.90 (2.79) | 6.77 (1.38) | 7.12 (1.94) | 6.22 * (1.93) | 5.73 † (1.30) | 7.21 * (2.00) | 6.64 † (1.33) |
Visit 1 | Visit 2 | Visit 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Baseline (0°) | Upright (≥30°) | Baseline (0°) | Upright (≥30°) | Baseline (0°) | Upright (≥30°) | |||||||
Unaffected | Affected | Unaffected | Affected | Unaffected | Affected | Unaffected | Affected | Unaffected | Affected | Unaffected | Affected | |
Mean MABP (mmHg) | 100.95 (17.02) | 90.76 (7.36) | 93.79 (11.63) | 86.85 (11.20) | 95.31 (10.97) | 95.04 (10.64) | ||||||
Mean CBFV (cms−1) | 43.44 (14.94) | 38.34 (14.42) | 43.60 (15.01) | 36.99 (14.55) | 41.41 (9.45) | 44.77 (14.35) | 40.71 (10.07) | 46.21 (20.91) | 41.06 (8.86) | 38.07 (14.54) | 41.17 (5.70) | 37.62 (12.14) |
SD MABP (mmHg) | 5.52 (2.63) | 7.26 (4.42) | 3.98 * (1.69) | 5.17 * (2.19) | 4.43 * (2.21) | 5.70 * (2.79) | ||||||
SD CBFV (cms−1) | 4.12 1.54 | 2.92 † (1.56) | 5.06 (2.85) | 3.99 † (1.84) | 3.36 (1.43) | 3.25 (1.35) | 3.53 (1.35) | 4.39 (2.85) | 3.50 (1.77) | 3.00 † (1.42) | 3.71 (1.59) | 3.60 † (1.31) |
CoV MABP (%) | 4.88 (2.47) | 6.70 (4.99) | 3.93 * (1.75) | 5.49 * (2.46) | 4.13 * (2.16) | 5.52 * (3.48) | ||||||
CoV CBFV (%) | 8.91 (2.51) | 6.52 (3.11) | 9.54 (3.95) | 10.05 (5.09) | 7.57 (3.06) | 6.91 (2.67) | 8.15 (2.66) | 7.36 (2.42) | 7.37 (3.20) | 7.23 † (3.23) | 8.24 (3.19) | 9.12 † (3.29) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sands, E.; Wong, L.; Lam, M.Y.; Panerai, R.B.; Robinson, T.G.; Minhas, J.S. The Effects of Gradual Change in Head Positioning on the Relationship between Systemic and Cerebral Haemodynamic Parameters in Healthy Controls and Acute Ischaemic Stroke Patients. Brain Sci. 2020, 10, 582. https://doi.org/10.3390/brainsci10090582
Sands E, Wong L, Lam MY, Panerai RB, Robinson TG, Minhas JS. The Effects of Gradual Change in Head Positioning on the Relationship between Systemic and Cerebral Haemodynamic Parameters in Healthy Controls and Acute Ischaemic Stroke Patients. Brain Sciences. 2020; 10(9):582. https://doi.org/10.3390/brainsci10090582
Chicago/Turabian StyleSands, Eloise, Louvinia Wong, Man Y. Lam, Ronney B. Panerai, Thompson G. Robinson, and Jatinder S. Minhas. 2020. "The Effects of Gradual Change in Head Positioning on the Relationship between Systemic and Cerebral Haemodynamic Parameters in Healthy Controls and Acute Ischaemic Stroke Patients" Brain Sciences 10, no. 9: 582. https://doi.org/10.3390/brainsci10090582
APA StyleSands, E., Wong, L., Lam, M. Y., Panerai, R. B., Robinson, T. G., & Minhas, J. S. (2020). The Effects of Gradual Change in Head Positioning on the Relationship between Systemic and Cerebral Haemodynamic Parameters in Healthy Controls and Acute Ischaemic Stroke Patients. Brain Sciences, 10(9), 582. https://doi.org/10.3390/brainsci10090582