Age-Dependency of Neurite Outgrowth in Postnatal Mouse Cochlear Spiral Ganglion Explants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Harvesting of Spiral Ganglion Explants
2.3. Treatment and Culture of Spiral Ganglion Explants
2.4. Fixation and Immunostaining
2.5. Imaging
2.6. Analysis of Neurite Outgrowth
2.7. Statistical Analysis
3. Results
3.1. Age-Dependent Differences in Spontaneous Neurite Outgrowth
3.2. Age-Dependent Differences in BDNF-Stimulated Neurite Outgrowth
3.3. Age-Dependent Differences in Small-Molecule TrkB Agonist-Stimulated Neurite Outgrowth
3.4. Age-Dependent Differences in THF Efficacy
3.5. THF Efficacy with Low Concentrations of BDNF and NT-3
3.6. THF Efficacy with Compounds Released from the Organ of Corti
3.7. Trk Receptor and Ligand Involvement in Neurite Outgrowth
4. Discussion
4.1. Age-Dependent Differences in Neurite Outgrowth
4.2. Neurotrophic Effects Elicited by Small-Molecule TrkB Agonists
4.3. Molecular Mechanism Underlying Age-Dependent Differences in Neurite Outgrowth and THF Efficacy
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shepherd, R.K.; Pyman, B.C.; Clark, G.M.; Webb, R.L. Banded Intracochlear Electrode Array: Evaluation of Insertion Trauma in Human Temporal Bones. Ann. Otol. Rhinol. Laryngol. 1985, 94, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, D.W. Multichannel Intracochlear Electrodes. Laryngoscope 1987, 97, 42–49. [Google Scholar] [CrossRef]
- Gstoettner, P.F.W. Intracochlear Position of Cochlear Implant Electrodes. Acta Oto-Laryngologica 1999, 119, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Black, R.C.; Clark, G.M.; Tong, Y.C.; Patrick, J.F. Current distributions in coclear stimulation. Ann. New York Acad. Sci. 1983, 405, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.S.; Dorman, M.F. Cochlear implants: a remarkable past and a brilliant future. Hear. Res. 2008, 242, 3–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirvola, U.; Arumäe, U.; Moshnyakov, M.; Palgi, J.; Saarma, M.; Ylikoski, J. Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation. Hear. Res. 1994, 75, 131–144. [Google Scholar] [CrossRef]
- Fritzsch, B. The role of neurotrophic factors in regulating the development of inner ear innervation. Trends Neurosci. 1997, 20, 159–164. [Google Scholar] [CrossRef]
- Fritzsch, B.; Silos-Santiago, I.; Bianchi, L.M.; Farinas, I. Effects of neurotrophin and neurotrophin receptor disruption on the afferent inner ear innervation. Semin. Cell Dev. Biol. 1997, 8, 277–284. [Google Scholar] [CrossRef]
- Fritzsch, B.; Tessarollo, L.; Coppola, E.; Reichardt, L.F.; Coppola, V. Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance; Elsevier BV: Amsterdam, The Netherlands, 2004; pp. 265–278. [Google Scholar]
- Fritzsch, B. Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia. Brain Res. Bull. 2003, 60, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Avila, M.A.; Varela-Nieto, I.; Romero, G.; Mato, J.M.; Giraldez, F.; Van De Water, T.R.; Represa, J. Brain-Derived Neurotrophic Factor and Neurotrophin-3 Support the Survival and Neuritogenesis Response of Developing Cochleovestibular Ganglion Neurons. Dev. Biol. 1993, 159, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, P.; Malgrange, B.; Staecker, H.; Moghadass, M.; Van De Water, T.R.; Moonen, G. Neurotrophins affect survival and neuritogenesis by adult injured auditory neurons in vitro. NeuroReport 1994, 5, 865–868. [Google Scholar] [CrossRef] [PubMed]
- Malgrange, B.; Lefebvre, P.; Van De Water, T.R.; Staecker, H.; Moonen, G. Effects of neurotrophins on early auditory neurones in cell culture. NeuroReport 1996, 7, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Hegarty, J.L.; Kay, A.R.; Green, S.H. Trophic Support of Cultured Spiral Ganglion Neurons by Depolarization Exceeds and Is Additive with that by Neurotrophins or cAMP and Requires Elevation of [Ca2+]i within a Set Range. J. Neurosci. 1997, 17, 1959–1970. [Google Scholar] [CrossRef] [Green Version]
- Mou, K.; Hunsberger, C.L.; Cleary, J.M.; Davis, R.L. Synergistic effects of BDNF and NT-3 on postnatal spiral ganglion neurons. J. Comp. Neurol. 1997, 386, 529–539. [Google Scholar] [CrossRef]
- Budenz, C.L.; Pfingst, B.E.; Raphael, Y. The use of Neurotrophin Therapy in the Inner Ear to Augment Cochlear Implantation Outcomes. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2012, 295, 1896–1908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poduslo, J.F.; Curran, G.L. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Mol. Brain Res. 1996, 36, 280–286. [Google Scholar] [CrossRef]
- Massa, S.M.; Yang, T.; Xie, Y.; Shi, J.; Bilgen, M.; Joyce, J.N.; Nehama, D.; Rajadas, J.; Longo, F.M. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J. Clin. Investig. 2010, 120, 1774–1785. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.-W.; Liu, X.; Yepes, M.; Shepherd, K.R.; Miller, G.W.; Liu, Y.; Wilson, W.D.; Xiao, G.; Blanchi, B.; Sun, Y.E.; et al. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl. Acad. Sci. USA 2010, 107, 2687–2692. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.-W.; Liu, X.; Chan, C.B.; France, S.A.; Sayeed, I.; Tang, W.; Lin, X.; Xiao, G.; Andero, R.; Chang, Q.; et al. Deoxygedunin, a Natural Product with Potent Neurotrophic Activity in Mice. PLoS ONE 2010, 5, e11528. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chan, C.-B.; Jang, S.-W.; Pradoldej, S.; Huang, J.; He, K.; Phun, L.H.; France, S.; Xiao, G.; Jia, Y.; et al. A Synthetic 7,8-Dihydroxyflavone Derivative Promotes Neurogenesis and Exhibits Potent Antidepressant Effect. J. Med. Chem. 2010, 53, 8274–8286. [Google Scholar] [CrossRef] [Green Version]
- Longo, F.M.; Massa, S.M. Small-molecule modulation of neurotrophin receptors: a strategy for the treatment of neurological disease. Nat. Rev. Drug Discov. 2013, 12, 507–525. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Chang, Q.; Liu, X.; Gong, S.; Ye, K.; Lin, X. 7,8,3′-Trihydroxyflavone, a potent small molecule TrkB receptor agonist, protects spiral ganglion neurons from degeneration both in vitro and in vivo. Biochem. Biophys. Res. Commun. 2012, 422, 387–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Q.; Chang, Q.; Liu, X.; Wang, Y.; Li, H.; Gong, S.; Ye, K.; Lin, X. Protection of Spiral Ganglion Neurons from Degeneration Using Small-Molecule TrkB Receptor Agonists. J. Neurosci. 2013, 33, 13042–13052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, K.; Pak, K.; Chavez, E.; Mullen, L.; Euteneuer, S.; Ryan, A.F. Changes in responsiveness of rat spiral ganglion neurons to neurotrophins across age: differential regulation of survival and neuritogenesis. Int. J. Neurosci. 2013, 123, 465–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Kondo, K.; Ushio, M.; Kaga, K.; Ryan, A.F.; Yamasoba, T. Developmental changes in the responsiveness of rat spiral ganglion neurons to neurotrophic factors in dissociated culture: differential responses for survival, neuritogenesis and neuronal morphology. Cell Tissue Res. 2012, 351, 15–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aletsee, C.; Mullen, L.; Kim, D.; Pak, K.; Brors, D.; Dazert, S.; Ryan, A.F. The Disintegrin Kistrin Inhibits Neurite Extension from Spiral Ganglion Explants Cultured on Laminin. Audiol. Neurotol. 2001, 6, 57–65. [Google Scholar] [CrossRef]
- Evans, A.R.; Euteneuer, S.; Chavez, E.; Mullen, L.M.; Hui, E.E.; Bhatia, S.N.; Ryan, A.F. Laminin and fibronectin modulate inner ear spiral ganglion neurite outgrowth in an in vitro alternate choice assay. Dev. Neurobiol. 2007, 67, 1721–1730. [Google Scholar] [CrossRef]
- Evans, A.J.; Thompson, B.C.; Wallace, G.G.; Millard, R.; O’Leary, S.; Clark, G.M.; Shepherd, R.K.; Richardson, R.T. Promoting neurite outgrowth from spiral ganglion neuron explants using polypyrrole/BDNF-coated electrodes. J. Biomed. Mater. Res. Part A 2009, 91, 241–250. [Google Scholar] [CrossRef]
- Barclay, M.; Ryan, A.F.; Housley, G.D. Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development. Neural Dev. 2011, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Mullen, L.M.; Pak, K.K.; Chavez, E.; Kondo, K.; Brand, Y.; Ryan, A.F. Ras/p38 and PI3K/Akt but not Mek/Erk signaling mediate BDNF-induced neurite formation on neonatal cochlear spiral ganglion explants. Brain Res. 2012, 1430, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Pak, K.; Evans, A.; Kamgar-Parsi, A.; Fausti, S.; Mullen, L.; Ryan, A.F. Neurotrophins differentially stimulate the growth of cochlear neurites on collagen surfaces and in gels. Neural Regen. Res. 2013, 8, 1541–1550. [Google Scholar] [PubMed]
- Wiechers, B.; Gestwa, G.; Mack, A.; Carroll, P.; Zenner, H.-P.; Knipper, M. A Changing Pattern of Brain-Derived Neurotrophic Factor Expression Correlates with the Rearrangement of Fibers during Cochlear Development of Rats and Mice. J. Neurosci. 1999, 19, 3033–3042. [Google Scholar] [CrossRef] [Green Version]
- Schimmang, T.; Tan, J.; Müller, M.; Zimmermann, U.; Rohbock, K.; Köpschall, I.; Limberger, A.; Minichiello, L.; Knipper, M. Lack of Bdnf and TrkB signalling in the postnatal cochlea leads to a spatial reshaping of innervation along the tonotopic axis and hearing loss. Development 2003, 130, 4741–4750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farinas, I.; Jones, K.R.; Tessarollo, L.; Vigers, A.J.; Huang, E.; Kirstein, M.; De Caprona, D.C.; Coppola, V.; Backus, C.; Reichardt, L.F.; et al. Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J. Neurosci. 2001, 21, 6170–6180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugawara, M.; Murtie, J.C.; Stankovic, K.M.; Liberman, M.C.; Corfas, G. Dynamic patterns of neurotrophin 3 expression in the postnatal mouse inner ear. J. Comp. Neurol. 2007, 501, 30–37. [Google Scholar] [CrossRef]
- Tapley, P.; Lamballe, F.; Barbacid, M. K252a is a selective inhibitor of the tyrosine protein kinase activity of the trk family of oncogenes and neurotrophin receptors. Oncogene 1992, 7, 371–381. [Google Scholar] [PubMed]
- Shelton, D.; Sutherland, J.; Gripp, J.; Camerato, T.; Armanini, M.; Phillips, H.; Carroll, K.; Spencer, S.; Levinson, A. Human trks: molecular cloning, tissue distribution, and expression of extracellular domain immunoadhesins. J. Neurosci. 1995, 15, 477–491. [Google Scholar] [CrossRef] [Green Version]
- Abramoff, M.D.; Magalhaes, P.J.; Ram, S.J. Image processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Sholl, D.A. Dendritic organization in the neurons of the visual and motor cortices of the cat. J. Anat. 1953, 87, 387–406. [Google Scholar]
- Kramer, B.; Tropitzsch, A.; Müller, M.; Löwenheim, H. Myelin-induced inhibition in a spiral ganglion organ culture – Approaching a natural environment in vitro. Neurosci. 2017, 357, 75–83. [Google Scholar] [CrossRef]
- Frick, C.; Müller, M.; Wank, U.; Tropitzsch, A.; Kramer, B.; Senn, P.; Rask-Andersen, H.; Wiesmüller, K.-H.; Löwenheim, H. Biofunctionalized peptide-based hydrogels provide permissive scaffolds to attract neurite outgrowth from spiral ganglion neurons. Colloids Surfaces B: Biointerfaces 2017, 149, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Transformations, means, and confidence intervals. BMJ 1996, 312, 1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellner, Y.; Gödecke, N.; Dierkes, T.; Thieme, N.; Zagrebelsky, M.; Korte, M. The BDNF effects on dendritic spines of mature hippocampal neurons depend on neuronal activity. Front. Synaptic Neurosci. 2014, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Douglas, M.R.; Morrison, K.C.; Jacques, S.J.; Leadbeater, W.E.; Gonzalez, A.M.; Berry, M.; Logan, A.; Ahmed, Z. Off-target effects of epidermal growth factor receptor antagonists mediate retinal ganglion cell disinhibited axon growth. Brain 2009, 132, 3102–3121. [Google Scholar] [CrossRef] [Green Version]
- Nayagam, B.A.; Muniak, M.A.; Ryugo, D.K. The spiral ganglion: Connecting the peripheral and central auditory systems. Hear. Res. 2011, 278, 2–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, E.F.; Bothwell, M.A.; Schecterson, L.C.; Von Bartheld, C.S. Expression of BDNF and NT-3 mRNA in hair cells of the organ of Corti: Quantitative analysis in developing rats. Hear. Res. 1994, 73, 46–56. [Google Scholar] [CrossRef]
- Hafidi, A. Distribution of BDNF, NT-3 and NT-4 in the developing auditory brainstem. Int. J. Dev. Neurosci. 1999, 17, 285–294. [Google Scholar] [CrossRef]
- Tierney, T.S.; Doubell, T.P.; Xia, G.; Moore, D.R. Development of brain-derived neurotrophic factor and neurotrophin-3 immunoreactivity in the lower auditory brainstem of the postnatal gerbil. Eur. J. Neurosci. 2001, 14, 785–793. [Google Scholar] [CrossRef]
- Huang, L.-C.; Thorne, P.R.; Housley, G.D.; Montgomery, J.M. Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development 2007, 134, 2925–2933. [Google Scholar] [CrossRef] [Green Version]
- Hashino, E.; Dolnick, R.Y.; Cohan, C.S. Developing vestibular ganglion neurons switch trophic sensitivity from BDNF to GDNF after target innervation. J. Neurobiol. 1999, 38, 414–427. [Google Scholar] [CrossRef]
- Roehm, P.C.; Hansen, M. Strategies to preserve or regenerate spiral ganglion neurons. Curr. Opin. Otolaryngol. Head Neck Surg. 2005, 13, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Bailey, E.M.; Green, S.H. Postnatal expression of neurotrophic factors accessible to spiral ganglion neurons in the auditory system of adult hearing and deafened rats. J. Neurosci. 2014, 34, 13110–13126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzella, P.; Clark, G.M.; Shepherd, R.K.; Bartlett, P.F.; Kilpatrick, T.J. Synergy between TGF-beta 3 and NT-3 to promote the survival of spiral ganglia neurones in vitro. Neurosci. Lett. 1998, 240, 77–80. [Google Scholar] [CrossRef]
- Marzella, P.; Gillespie, L.N.; Clark, G.M.; Bartlett, P.F.; Kilpatrick, T.J. The neurotrophins act synergistically with LIF and members of the TGF-beta superfamily to promote the survival of spiral ganglia neurons in vitro. Hear. Res. 1999, 138, 73–80. [Google Scholar] [CrossRef]
- Kaiser, O.; Paasche, G.; Stöver, T.; Ernst, S.; Lenarz, T.; Kral, A.; Warnecke, A. TGF-beta superfamily member activin A acts with BDNF and erythropoietin to improve survival of spiral ganglion neurons in vitro. Neuropharmacol. 2013, 75, 416–425. [Google Scholar] [CrossRef]
- Ylikoski, J. Can sensorineural hearing impairment be treated? Duodecim; laaketieteellinen aikakauskirja 1998, 114, 1779. [Google Scholar]
- Yagi, M.; Kanzaki, S.; Kawamoto, K.; Shin, B.; Shah, P.P.; Magal, E.; Sheng, J.; Raphael, Y. Spiral Ganglion Neurons Are Protected from Degeneration by GDNF Gene Therapy. J. Assoc. Res. Otolaryngol. 2000, 1, 315–325. [Google Scholar]
- Warnecke, A.; Scheper, V.; Buhr, I.; Wenzel, G.I.; Wissel, K.; Paasche, G.; Berkingali, N.; Jørgensen, J.R.; Lenarz, T.; Stöver, T. Artemin improves survival of spiral ganglion neurons in vivo and in vitro. NeuroReport 2010, 21, 517–521. [Google Scholar] [CrossRef]
- Hartnick, C.J.; Staecker, H.; Malgrange, B.; Lefebvre, P.P.; Liu, W.; Moonen, G.; Van De Water, T.R. Neurotrophic effects of BDNF and CNTF, alone and in combination, on postnatal day 5 rat acoustic ganglion neurons. J. Neurobiol. 1996, 30, 246–254. [Google Scholar] [CrossRef]
- Whitlon, D.S.; Grover, M.; Tristano, J.; Williams, T.; Coulson, M.T. Culture conditions determine the prevalence of bipolar and monopolar neurons in cultures of dissociated spiral ganglion. Neuroscience 2007, 146, 833–840. [Google Scholar] [CrossRef] [Green Version]
- Schwieger, J.; Warnecke, A.; Lenarz, T.; Esser, K.-H.; Scheper, V. Neuronal Survival, Morphology and Outgrowth of Spiral Ganglion Neurons Using a Defined Growth Factor Combination. PLoS ONE 2015, 10, e0133680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boström, M.; Khalifa, S.; Boström, H.; Liu, W.; Friberg, U.; Rask-Andersen, H. Effects of Neurotrophic Factors on Growth and Glial Cell Alignment of Cultured Adult Spiral Ganglion Cells. Audiol. Neurotol. 2009, 15, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Euteneuer, S.; Yang, K.H.; Chavez, E.; Leichtle, A.; Loers, G.; Olshansky, A.; Pak, K.; Schachner, M.; Ryan, A.F. Glial cell line-derived neurotrophic factor (GDNF) induces neuritogenesis in the cochlear spiral ganglion via neural cell adhesion molecule (NCAM). Mol. Cell. Neurosci. 2012, 54, 30–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dazert, S.; Baird, A.; Ryan, A.F. Receptor-targeted delivery of an intracellular toxin to outer hair cells by fibroblast growth factor. Hear. Res. 1998, 115, 143–148. [Google Scholar] [CrossRef]
- Hossain, W.A.; Morest, D.K. Fibroblast growth factors (FGF-1, FGF-2) promote migration and neurite growth of mouse cochlear ganglion cells in vitro: Immunohistochemistry and antibody perturbation. J. Neurosci. Res. 2000, 62, 40–55. [Google Scholar] [CrossRef]
- Lefebvre, P.; Weber, T.; Rigo, J.-M.; Staecker, H.; Moonen, G.; Van De Water, T.R. Peripheral and central target-derived trophic factor(s) effects on auditory neurons. Hear. Res. 1992, 58, 185–192. [Google Scholar] [CrossRef]
- Wissel, K.; Wefstaedt, P.; Miller, J.M.; Lenarz, T.; Stöver, T. Differential brain-derived neurotrophic factor and transforming growth factor-beta expression in the rat cochlea following deafness. NeuroReport 2006, 17, 1297–1301. [Google Scholar] [CrossRef]
- Lin, L.; Koutnouyan, H.; Baird, A.; Ryan, A.F. Acidic and basic FGF mRNA expression in the adult and developing rat cochlea. Hear. Res. 1993, 69, 182–193. [Google Scholar] [CrossRef]
- Todd, D.; Gowers, I.; Dowler, S.J.; Wall, M.D.; McAllister, G.; Fischer, D.F.; Dijkstra, S.; Fratantoni, S.A.; Van De Bospoort, R.; Veenman-Koepke, J.; et al. A Monoclonal Antibody TrkB Receptor Agonist as a Potential Therapeutic for Huntington’s Disease. PLoS ONE 2014, 9, e87923. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Obianyo, O.; Chan, C.B.; Huang, J.; Xue, S.; Yang, J.J.; Zeng, F.; Goodman, M.; Ye, K. Biochemical and Biophysical Investigation of the Brain-derived Neurotrophic Factor Mimetic 7,8-Dihydroxyflavone in the Binding and Activation of the TrkB Receptor. J. Biol. Chem. 2014, 289, 27571–27584. [Google Scholar] [CrossRef] [Green Version]
- Cazorla, M.; Jouvenceau, A.; Rose, C.; Guilloux, J.-P.; Pilon, C.; Dranovsky, A.; Prémont, J. Cyclotraxin-B, the First Highly Potent and Selective TrkB Inhibitor, Has Anxiolytic Properties in Mice. PLoS ONE 2010, 5, e9777. [Google Scholar] [CrossRef] [PubMed]
- Cazorla, M.; Prémont, J.; Mann, A.; Girard, N.; Kellendonk, C.; Rognan, D. Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J. Clin. Investig. 2011, 121, 1846–1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazorla, M.; Arrang, J.; Prémont, J. Pharmacological characterization of six trkB antibodies reveals a novel class of functional agents for the study of the BDNF receptor. Br. J. Pharmacol. 2011, 162, 947–960. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Ye, H.; Kuruvilla, R.; Ramanan, N.; Scangos, K.W.; Zhang, C.; Johnson, N.M.; England, P.M.; Shokat, K.M.; Ginty, D.D. A Chemical-Genetic Approach to Studying Neurotrophin Signaling. Neuron 2005, 46, 13–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bibel, M.; Hoppe, E.; Barde, Y.-A. Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J. 1999, 18, 616–622. [Google Scholar] [CrossRef] [Green Version]
- Radeke, M.J.; Misko, T.P.; Hsu, C.; Herzenberg, L.A.; Shooter, E.M. Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature 1987, 325, 593–597. [Google Scholar] [CrossRef]
- Barker, P.A. p75NTR Is Positively Promiscuous. Neuron 2004, 42, 529–533. [Google Scholar] [CrossRef] [Green Version]
- Skeldal, S.; Matusica, D.; Nykjaer, A.; Coulson, E.J. Proteolytic processing of the p75 neurotrophin receptor: A prerequisite for signalling? BioEssays 2011, 33, 614–625. [Google Scholar] [CrossRef]
- Reichardt, L.F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. B: Biol. Sci. 2006, 361, 1545–1564. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; Pang, P.T.; Woo, N.H. The yin and yang of neurotrophin action. Nat. Rev. Neurosci. 2005, 6, 603–614. [Google Scholar] [CrossRef] [Green Version]
- Chao, M. Neurotrophins and their receptors: A convergence point for many signalling pathways. Nat. Rev. Neurosci. 2003, 4, 299–309. [Google Scholar] [CrossRef]
- Ylikoski, J.; Pirvola, U.; Moshnyakov, M.; Palgi, J.; Arumäe, U.; Saarma, M. Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hear. Res. 1993, 65, 69–78. [Google Scholar] [CrossRef]
- Zheng, J.L.; Stewart, R.R.; Gao, W.Q. Neurotrophin-4/5 enhances survival of cultured spiral ganglion neurons and protects them from cisplatin neurotoxicity. J. Neurosci. 1995, 15, 5079–5087. [Google Scholar] [CrossRef]
- Green, S.H.; Bailey, E.; Wang, Q.; Davis, R.L. The Trk A, B, C’s of Neurotrophins in the Cochlea. Anat Rec. 2012, 1877–1895. [Google Scholar] [CrossRef] [PubMed]
- Peterson, S.; Bogenmann, E. The RET and TRKA pathways collaborate to regulate neuroblastoma differentiation. Oncogene 2004, 23, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Jin, Z.; Järlebark, D.; Scarfone, E.; Ulfendahl, M. Survival, Synaptogenesis, and Regeneration of Adult Mouse Spiral Ganglion Neurons In Vitro. J. Neurobiol. 2007, 67, 108–122. [Google Scholar] [CrossRef]
- Staecker, H.; Kopke, R.; Malgrange, B.; Lefebvre, P.; Van De Water, T.R. NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells. NeuroReport 1996, 7, 889–894. [Google Scholar] [CrossRef]
- Staecker, H.; Liu, W.; Hartnick, C.; Lefebvre, P.; Malgrange, B.; Moonen, G.; Van De Water, T.R. NT-3 combined with CNTF promotes survival of neurons in modiolus-spiral ganglion explants. NeuroReport 1995, 6, 1533–1537. [Google Scholar] [CrossRef]
- Lefebvre, P.P.; Staecker, H.; Weber, T.; Van de Water, T.R.; Rogister, B.; Moonen, G. TGFSS1 modulates bFGF receptor message expression in cultured adult auditory neurons. Neuroreport 1991, 2, 305–308. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frick, C.; Fink, S.; Schmidbauer, D.; Rousset, F.; Eickhoff, H.; Tropitzsch, A.; Kramer, B.; Senn, P.; Glueckert, R.; Rask-Andersen, H.; et al. Age-Dependency of Neurite Outgrowth in Postnatal Mouse Cochlear Spiral Ganglion Explants. Brain Sci. 2020, 10, 580. https://doi.org/10.3390/brainsci10090580
Frick C, Fink S, Schmidbauer D, Rousset F, Eickhoff H, Tropitzsch A, Kramer B, Senn P, Glueckert R, Rask-Andersen H, et al. Age-Dependency of Neurite Outgrowth in Postnatal Mouse Cochlear Spiral Ganglion Explants. Brain Sciences. 2020; 10(9):580. https://doi.org/10.3390/brainsci10090580
Chicago/Turabian StyleFrick, Claudia, Stefan Fink, Dominik Schmidbauer, Francis Rousset, Holger Eickhoff, Anke Tropitzsch, Benedikt Kramer, Pascal Senn, Rudolf Glueckert, Helge Rask-Andersen, and et al. 2020. "Age-Dependency of Neurite Outgrowth in Postnatal Mouse Cochlear Spiral Ganglion Explants" Brain Sciences 10, no. 9: 580. https://doi.org/10.3390/brainsci10090580
APA StyleFrick, C., Fink, S., Schmidbauer, D., Rousset, F., Eickhoff, H., Tropitzsch, A., Kramer, B., Senn, P., Glueckert, R., Rask-Andersen, H., Wiesmüller, K. -H., Löwenheim, H., & Müller, M. (2020). Age-Dependency of Neurite Outgrowth in Postnatal Mouse Cochlear Spiral Ganglion Explants. Brain Sciences, 10(9), 580. https://doi.org/10.3390/brainsci10090580