Understanding of Numerical Information during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Methods
2.2.1. Survey
COV Questionnaire
Objective Scales
Subjective Scales
Affective Scales
2.3. Statistical Analyses
3. Results
3.1. Demographical Information
3.2. COV Questionnaire
3.2.1. Information about COVID-19
3.2.2. Compliance during the COVID-19 Pandemic
3.3. Objective Scales
3.4. Subjective Scales
3.5. Affective Scales
3.6. Differences between People Performing at Ceiling on the COV Numeracy Scale and Others
3.7. Sex Differences
3.8. Correlation Analysis
3.9. Hierarchical Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. COV Numeracy Scale (German)
- In der Stadt X konnte die Wachstumsrate infizierter Menschen halbiert werden. Hier sehen Sie drei Messergebnisse für drei verschiedene Standorte. Über welchen Ort sprechen wir?
- (a)
- 100—200—100
- (b)
- 100—200—300
- (c)
- 100—200—150
- Was bedeutet exponentielles Wachstum? Welche Zahlenreihe wächst exponentiell?
- (a)
- 2—4—8
- (b)
- 100—200—300
- (c)
- 2000—4000—6000
- Ein Replikationsfaktor von 0 bedeutet:
- (a)
- Es werden immer gleich viele Leute infiziert.
- (b)
- Es werden 10x so viele Leute infiziert.
- (c)
- Es wird niemand mehr infiziert.
- Die Zahl der Erkrankungen erhöht sich täglich um 30%. Welche Zahlenreihe entspricht diesem Wachstum?
- (a)
- 1000—1300—1600
- (b)
- 100—130—169
- (c)
- 10—30—90
COV Numeracy Scale (Approximate Translation in English)
- 1.
- In the town X, the growth rate of infected people halved. Here, you see three different points of measurement for three different places. About which location are we speaking?
- (a)
- 100—200—100
- (b)
- 100—200—300
- (c)
- 100—200—150
- 2.
- What does exponential growth mean? Which row of numbers does exponentially grow?
- (a)
- 2—4—8
- (b)
- 100—200—300
- (c)
- 2000—4000—6000
- 3.
- A reproduction number of 0 means:
- (a)
- The same number of people is always infected.
- (b)
- Ten times as many people are infected.
- (c)
- Nobody is infected anymore.
- 4.
- The number of infections increases daily by about 30%. Which row of numbers does correspond to this growth?
- (a)
- 1000—1300—1600
- (b)
- 100—130—169
- (c)
- 10—30—90
References
- DiGiovanni, C.; Conley, J.; Chiu, D.; Zaborski, J. Factors influencing compliance with quarantine in Toronto during the 2003 SARS outbreak. Biosecur. Bioterror. Biodef. Strategy Pract. Sci. 2004, 2, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet Lond. Engl. 2020, 395, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Desclaux, A.; Badji, D.; Ndione, A.G.; Sow, K. Accepted monitoring or endured quarantine? Ebola contacts’ perceptions in Senegal. Soc. Sci. Med. 2017, 178, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Retamero, R.; Sobkow, A.; Petrova, D.; Garrido, D.; Traczyk, J. Numeracy and Risk Literacy: What Have We Learned so Far? Span. J. Psychol. 2019, 22, E10. [Google Scholar] [CrossRef] [Green Version]
- Estrada, C.; Barnes, V.; Collins, C.; Byrd, J.C. Health literacy and numeracy. JAMA 1999, 282, 527. [Google Scholar] [CrossRef]
- Gigerenzer, G.; Edwards, A. Simple tools for understanding risks: From innumeracy to insight. BMJ 2003, 327, 741–744. [Google Scholar] [CrossRef] [Green Version]
- Hoffrage, U. MEDICINE: Communicating Statistical Information. Science 2000, 290, 2261–2262. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, S.L.; Pignone, M. Numeracy and the medical student’s ability to interpret data. Eff. Clin. Pract. ECP 2002, 5, 35–40. [Google Scholar]
- Cokely, E.T.; Feltz, A.; Ghazal, S.; Allan, J.N.; Petrova, D.; Garcia-Retamero, R. Skilled Decision Theory: From Intelligence to Numeracy and Expertise. In The Cambridge Handbook of Expertise and Expert Performance; Ericsson, K.A., Hoffman, R.R., Kozbelt, A., Williams, A.M., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. 476–505. ISBN 978-1-316-48074-8. [Google Scholar]
- Tversky, A.; Kahneman, D. The framing of decisions and the psychology of choice. Science 1981, 211, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Gigerenzer, G.; Gaissmaier, W. Heuristic decision making. Annu. Rev. Psychol. 2011, 62, 451–482. [Google Scholar] [CrossRef] [Green Version]
- Bechara, A.; Damasio, H.; Damasio, A.R. Emotion, decision making and the orbitofrontal cortex. Cereb. Cortex 2000, 10, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Bechara, A.; Damasio, A.R. The somatic marker hypothesis: A neural theory of economic decision. Games Econ. Behav. 2005, 52, 336–372. [Google Scholar] [CrossRef]
- Brand, M.; Schiebener, J.; Pertl, M.-T.; Delazer, M. Know the risk, take the win: How executive functions and probability processing influence advantageous decision making under risk conditions. J. Clin. Exp. Neuropsychol. 2014, 36, 914–929. [Google Scholar] [CrossRef]
- Pertl, M.-T.; Zamarian, L.; Delazer, M. Reasoning and mathematical skills contribute to normatively superior decision making under risk: Evidence from the game of dice task. Cogn. Process. 2017, 18, 249–260. [Google Scholar] [CrossRef]
- Sinayev, A.; Peters, E. Cognitive reflection vs. calculation in decision making. Front. Psychol. 2015, 6, 532. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, L.M.; Woloshin, S.; Black, W.C.; Welch, H.G. The role of numeracy in understanding the benefit of screening mammography. Ann. Intern. Med. 1997, 127, 966–972. [Google Scholar] [CrossRef]
- Rolison, J.J.; Hanoch, Y.; Miron-Shatz, T. What do men understand about lifetime risk following genetic testing? The effect of context and numeracy. Health Psychol. Off. J. Div. Health Psychol. Am. Psychol. Assoc. 2012, 31, 530–533. [Google Scholar] [CrossRef] [Green Version]
- Reyna, V.F.; Nelson, W.L.; Han, P.K.; Dieckmann, N.F. How numeracy influences risk comprehension and medical decision making. Psychol. Bull. 2009, 135, 943–973. [Google Scholar] [CrossRef] [Green Version]
- Roozenbeek, J.; Schneider, C.R.; Dryhurst, S.; Kerr, J.; Freeman, A.L.J.; Recchia, G.; van der Bles, A.M.; van der Linden, S. Susceptibility to misinformation about COVID-19 around the world. R. Soc. Open Sci. 2020, 7, 201199. [Google Scholar] [CrossRef]
- Lipkus, I.M.; Samsa, G.; Rimer, B.K. General performance on a numeracy scale among highly educated samples. Med. Decis. Mak. Int. J. Soc. Med. Decis. Mak. 2001, 21, 37–44. [Google Scholar] [CrossRef]
- Delazer, M.; Kemmler, G.; Benke, T. Health numeracy and cognitive decline in advanced age. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 2013, 20, 639–659. [Google Scholar] [CrossRef] [PubMed]
- Zamarian, L.; Lenhart, L.; Nagele, M.; Steiger, R.; Gizewski, E.R.; Benke, T.; Scherfler, C.; Delazer, M. Effects of Cognitive Functioning and Education on Later-Life Health Numeracy. Gerontology 2020, 66, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Rolison, J.J.; Morsanyi, K.; Peters, E. Understanding Health Risk Comprehension: The Role of Math Anxiety, Subjective Numeracy, and Objective Numeracy. Med. Decis. Mak. Int. J. Soc. Med. Decis. Mak. 2020, 40, 222–234. [Google Scholar] [CrossRef] [Green Version]
- Pertl, M.-T.; Benke, T.; Zamarian, L.; Delazer, M. Decision Making and Ratio Processing in Patients with Mild Cognitive Impairment. J. Alzheimers Dis. JAD 2015, 48, 765–779. [Google Scholar] [CrossRef] [PubMed]
- Pertl, M.-T.; Benke, T.; Zamarian, L.; Martini, C.; Bodner, T.; Karner, E.; Delazer, M. Do patients with mild cognitive impairment understand numerical health information? J. Alzheimers Dis. JAD 2014, 40, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Pertl, M.-T.; Benke, T.; Zamarian, L.; Delazer, M. Effects of Healthy Aging and Mild Cognitive Impairment on a Real-Life Decision-Making Task. J. Alzheimers Dis. JAD 2017, 58, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- Fagerlin, A.; Zikmund-Fisher, B.J.; Ubel, P.A.; Jankovic, A.; Derry, H.A.; Smith, D.M. Measuring numeracy without a math test: Development of the Subjective Numeracy Scale. Med. Decis. Mak. Int. J. Soc. Med. Decis. Mak. 2007, 27, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Rolison, J.J.; Wood, S.; Hanoch, Y.; Liu, P.-J. Subjective numeracy scale as a tool for assessing statistical numeracy in older adult populations. Gerontology 2013, 59, 283–288. [Google Scholar] [CrossRef]
- McNaughton, C.D.; Cavanaugh, K.L.; Kripalani, S.; Rothman, R.L.; Wallston, K.A. Validation of a Short, 3-Item Version of the Subjective Numeracy Scale. Med. Decis. Making 2015, 35, 932–936. [Google Scholar] [CrossRef]
- Frederick, S. Cognitive Reflection and Decision Making. J. Econ. Perspect. 2005, 19, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Rammstedt, B.; Rammsayer, T. Inventar zur selbsteingeschätzten Intelligenz (ISI). Zs. Soz. Items Skalen ZIS 2003. [Google Scholar] [CrossRef]
- Nießen, D.; Groskurth, K.; Rammstedt, B.; Lechner, C.M. Risk Proneness Short Scale (R-1). ZIS-Collect. Items Scales Soc. Sci. 2020. [Google Scholar] [CrossRef]
- Blass, W. Belohnungsaufschub. Zs. Soz. Items Skalen ZIS 1997. [Google Scholar] [CrossRef]
- Pennycook, G.; Cheyne, J.A.; Koehler, D.J.; Fugelsang, J.A. Is the cognitive reflection test a measure of both reflection and intuition? Behav. Res. Methods 2016, 48, 341–348. [Google Scholar] [CrossRef]
- Campitelli, G.; Gerrans, P. Does the cognitive reflection test measure cognitive reflection? A mathematical modeling approach. Mem. Cognit. 2014, 42, 434–447. [Google Scholar] [CrossRef] [Green Version]
- Carriedo, N.; Corral, A.; Montoro, P.R.; Herrero, L. A developmental study of the bat/ball problem of CRT: How to override the bias and its relation to executive functioning. Br. J. Psychol. Lond. Engl. 2020, 111, 335–356. [Google Scholar] [CrossRef]
- Stieger, S.; Reips, U.-D. A limitation of the Cognitive Reflection Test: Familiarity. PeerJ 2016, 4, e2395. [Google Scholar] [CrossRef] [Green Version]
- van Prooijen, J.-W. Why Education Predicts Decreased Belief in Conspiracy Theories: Education and Conspiracy Beliefs. Appl. Cogn. Psychol. 2017, 31, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Stanley, M.L.; Barr, N.; Peters, K.; Seli, P. Analytic-thinking predicts hoax beliefs and helping behaviors in response to the COVID-19 pandemic. Think. Reason. 2021, 27, 464–477. [Google Scholar] [CrossRef]
Mdn | P.25 | P.75 | Min. | Max. | |
---|---|---|---|---|---|
COV Numeracy Scale (total correct) | 3.0 | 2.0 | 3.0 | 1 | 4 |
HNS (total correct) | 12.0 | 11.0 | 12.0 | 6 | 12 |
CRT (total correct) | 2.0 | 1.0 | 3.0 | 0 | 3 |
SNS (sum) | 15.0 | 13.0 | 16.0 | 6 | 18 |
ISI | |||||
Verbal comprehension | 5.0 | 5.0 | 6.0 | 3 | 7 |
Mathematical intelligence | 5.0 | 4.0 | 6.0 | 1 | 7 |
Memory | 5.0 | 4.0 | 6.0 | 2 | 7 |
Logical thinking | 5.0 | 5.0 | 6.0 | 2 | 7 |
Risk Proneness Short Scale (R-1) | 4.0 | 3.0 | 5.0 | 0 | 7 |
Delayed Reward Scale (sum) | 3.0 | 2.0 | 5.0 | 0 | 11 |
States prior to the pandemic | |||||
Anxiety | 2.0 | 1.0 | 3.0 | 1 | 8 |
Depression | 2.0 | 1.0 | 3.0 | 1 | 10 |
Current state | |||||
Anxiety | 3.0 | 2.0 | 5.0 | 1.0 | 9.0 |
Depression | 2.0 | 1.0 | 3.0 | 1.0 | 9.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamarian, L.; Fürstenberg, K.M.-A.; Gamboz, N.; Delazer, M. Understanding of Numerical Information during the COVID-19 Pandemic. Brain Sci. 2021, 11, 1230. https://doi.org/10.3390/brainsci11091230
Zamarian L, Fürstenberg KM-A, Gamboz N, Delazer M. Understanding of Numerical Information during the COVID-19 Pandemic. Brain Sciences. 2021; 11(9):1230. https://doi.org/10.3390/brainsci11091230
Chicago/Turabian StyleZamarian, Laura, Katharina M. -A. Fürstenberg, Nadia Gamboz, and Margarete Delazer. 2021. "Understanding of Numerical Information during the COVID-19 Pandemic" Brain Sciences 11, no. 9: 1230. https://doi.org/10.3390/brainsci11091230
APA StyleZamarian, L., Fürstenberg, K. M. -A., Gamboz, N., & Delazer, M. (2021). Understanding of Numerical Information during the COVID-19 Pandemic. Brain Sciences, 11(9), 1230. https://doi.org/10.3390/brainsci11091230