Decision Making and Risk Propensity in Individuals with Tendencies towards Specific Internet-Use Disorders
Abstract
:1. Introduction
- Individuals with tendency towards sIUD differ from those with regular/non-problematic use of the Internet regarding risky decision-making.
- 2.
- Risky decision-making moderates the effect of (a) trait impulsivity, (b) psychopathological symptoms, and (c) perceived stress on sIUD symptom severity.
2. Materials and Methods
3. Results
3.1. Descriptive Statistics
3.2. Group Comparisons
3.2.1. Differences in Risky Decision-Making
3.2.2. Differences in Impulsivity
3.2.3. Differences in Psychopathology
3.2.4. Differences in Perceived Stress
3.3. Exlpanation of Variance in Symptom Severity within the “sIUD Tendency” Group
3.3.1. Bivariate Correlations
3.3.2. Moderated Regression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mirabella, G. Should I stay or should I go? Conceptual underpinnings of goal-directed actions. Front. Syst. Neurosci. 2014, 8, 206. [Google Scholar] [CrossRef] [Green Version]
- Bechara, A. Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nat. Neurosci. 2005, 8, 1458–1463. [Google Scholar] [CrossRef] [PubMed]
- Kahneman, D. A perspective on judgment and choice: Mapping bounded rationality. Am. Psychol. 2003, 58, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Schiebener, J.; Brand, M. Decision making under objective risk conditions—A review of cognitive and emotional correlates, strategies, feedback processing, and external influences. Neuropsychol. Rev. 2015, 25, 171–198. [Google Scholar] [CrossRef]
- Strack, F.; Deutsch, R. Reflective and impulsive determinants of social behavior. Pers. Soc. Psychol. Rev. 2004, 8, 220–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirabella, G. Inhibitory control and impulsive responses in neurodevelopmental disorders. Dev. Med. Child Neurol. 2021, 63, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Noël, X.; Van Der Linden, M.; Bechara, A. The neurocognitive mechanisms of decision-making, impulse control, and loss of willpower to resist drugs. Psychiatry 2006, 3, 30–41. [Google Scholar]
- Volkow, N.D.; Morales, M. The brain on drugs: From reward to addiction. Cell 2015, 162, 712–725. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.Z.; Moeller, S.J.; Volkow, N.D. Cognitive disruptions in drug addiction: A focus on the prefrontal cortex. In Neuroimaging in Addiction; Adinoff, B., Stein, E.A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 179–207. [Google Scholar]
- Verdejo-Garcia, A.; Garcia-Fernandez, G.; Dom, G. Cognition and addiction. Dialogues Clin. Neurosci. 2019, 21, 281–290. [Google Scholar] [CrossRef]
- Evens, R.; Hoefler, M.; Biber, K.; Lueken, U. The Iowa Gambling Task in Parkinson’s disease: A meta-analysis on effects of disease and medication. Neuropsychologia 2016, 91, 163–172. [Google Scholar] [CrossRef]
- Kudlicka, A.; Clare, L.; Hindle, J.V. Executive functions in Parkinson’s disease: Systematic review and meta-analysis. Mov. Disord. 2011, 26, 2305–2315. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, K.; Hook, R.; Wickham, K.; Grant, J.E.; Chamberlain, S.R. Impulsivity in gambling disorder and problem gambling: A meta-analysis. Neuropsychopharmacology 2019, 44, 1354–1361. [Google Scholar] [CrossRef] [PubMed]
- Moccia, L.; Pettorruso, M.; De Crescenzo, F.; De Risio, L.; Di Nuzzo, L.; Martinotti, G.; Bifone, A.; Janiri, L.; Di Nicola, M. Neural correlates of cognitive control in gambling disorder: A systematic review of fMRI studies. Neurosci. Biobehav. Rev. 2017, 78, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Billieux, J.; Potenza, M.N.; Maurage, P.; Brevers, D.; Brand, M.; King, D.L. Cognitive factors associated with gaming disorder. In Cognition and Addiction; Verdejo-Garcia, A., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 221–230. [Google Scholar]
- Kuss, D.J.; Pontes, H.M.; Griffiths, M.D. Neurobiological correlates in internet gaming disorder: A systematic literature review. Front. Psychiatry 2018, 9, 166. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. International Classification of Diseases for Mortality and Morbidity Statistics (11th Revision). Available online: https://icd.who.int/browse11/l-m/en (accessed on 22 December 2021).
- Brand, M.; Rumpf, H.J.; Demetrovics, Z.; Müller, A.; Stark, R.; King, D.L.; Goudriaan, A.E.; Mann, K.; Trotzke, P.; Fineberg, N.A.; et al. Which conditions should be considered as disorders in the International Classification of Diseases (ICD-11) designation of “other specified disorders due to addictive behaviors”? J. Behav. Addict. 2020. [Google Scholar] [CrossRef]
- Brand, M.; Müller, A.; Stark, R.; Steins-Loeber, S.; Klucken, T.; Montag, C.; Diers, M.; Wolf, O.T.; Rumpf, H.J.; Wölfling, K.; et al. Addiction research unit: Affective and cognitive mechanisms of specific Internet-use disorders. Addict. Biol. 2021, 26, e13087. [Google Scholar] [CrossRef]
- Brand, M.; Young, K.S.; Laier, C.; Wölfling, K.; Potenza, M.N. Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: An Interaction of Person-Affect-Cognition-Execution (I-PACE) model. Neurosci. Biobehav. Rev. 2016, 71, 252–266. [Google Scholar] [CrossRef] [Green Version]
- Brand, M.; Wegmann, E.; Stark, R.; Müller, A.; Wölfling, K.; Robbins, T.W.; Potenza, M.N. The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neurosci. Biobehav. Rev. 2019, 104, 1–10. [Google Scholar] [CrossRef]
- Dong, G.; Potenza, M.N. A cognitive-behavioral model of Internet gaming disorder: Theoretical underpinnings and clinical implications. J. Psychiatr. Res. 2014, 58, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.Z.; Volkow, N.D. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 2011, 12, 652–669. [Google Scholar] [CrossRef]
- Zilverstand, A.; Huang, A.S.; Alia-Klein, N.; Goldstein, R.Z. Neuroimaging impaired response inhibition and salience attribution in human drug addiction: A systematic review. Neuron 2018, 98, 886–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioannidis, K.; Hook, R.; Goudriaan, A.E.; Vlies, S.; Fineberg, N.A.; Grant, J.E.; Chamberlain, S.R. Cognitive deficits in problematic Internet use: A meta-analysis of 40 studies. Br. J. Psychiatry 2019, 215, 639–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antons, S.; Brand, M.; Potenza, M.N. Neurobiology of cue-reactivity, craving, and inhibitory control in non-substance addictive behaviors. J. Neurol. Sci. 2020, 415, 116952. [Google Scholar] [CrossRef] [PubMed]
- Bechara, A.; Damasio, A.R.; Damasio, H.; Anderson, S.W. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 1994, 50, 7–15. [Google Scholar] [CrossRef]
- Bechara, A.; Tranel, D.; Damasio, H. Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 2000, 123, 2189–2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand, M.; Recknor, E.C.; Grabenhorst, F.; Bechara, A. Decisions under ambiguity and decisions under risk: Correlations with executive functions and comparisons of two different gambling tasks with implicit and explicit rules. J. Clin. Exp. Neuropsychol. 2007, 29, 86–99. [Google Scholar] [CrossRef]
- Upton, D.J.; Bishara, A.J.; Ahn, W.-Y.; Stout, J.C. Propensity for risk taking and trait impulsivity in the Iowa Gambling Task. Personal. Individ. Differ. 2011, 50, 492–495. [Google Scholar] [CrossRef] [Green Version]
- Brand, M.; Fujiwara, E.; Borsutzky, S.; Kalbe, E.; Kessler, J.; Markowitsch, H.J. Decision-making deficits of Korsakoff patients in a new gambling task with explicit rules: Associations with executive functions. Neuropsychology 2005, 19, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Brand, M.; Labudda, K.; Markowitsch, H.J. Neuropsychological correlates of decision-making in ambiguous and risky situations. Neural Netw. 2006, 19, 1266–1276. [Google Scholar] [CrossRef]
- Kovács, I.; Richman, M.J.; Janka, Z.; Maraz, A.; Andó, B. Decision making measured by the Iowa Gambling Task in alcohol use disorder and gambling disorder: A systematic review and meta-analysis. Drug Alcohol Depend. 2017, 181, 152–161. [Google Scholar] [CrossRef]
- Jiang, C.; Li, C.; Zhou, H.; Zhou, Z. Individuals with Internet gaming disorder have similar neurocognitive impairments and social cognitive dysfunctions as methamphetamine-dependent patients. Adicciones 2020, 1342. [Google Scholar] [CrossRef] [Green Version]
- Pawlikowski, M.; Brand, M. Excessive Internet gaming and decision making: Do excessive World of Warcraft players have problems in decision making under risky conditions? Psychiatry Res. 2011, 188, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Wölfling, K.; Duven, E.; Wejbera, M.; Beutel, M.E.; Müller, K.W. Discounting delayed monetary rewards and decision making in behavioral addictions—A comparison between patients with gambling disorder and internet gaming disorder. Addict. Behav. 2020, 108, 106446. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.-W.; Chen, P.-R.; Li, S.; Wang, L.-J.; Zhang, J.-T.; Yip, S.W.; Chen, G.; Deng, L.-Y.; Liu, Q.-X.; Fang, X.-Y. Decision-making for risky gains and losses among college students with Internet gaming disorder. PLoS ONE 2015, 10, e0116471. [Google Scholar] [CrossRef] [Green Version]
- Meshi, D.; Elizarova, A.; Bender, A.; Verdejo-Garcia, A. Excessive social media users demonstrate impaired decision making in the Iowa Gambling Task. J. Behav. Addict. 2019, 8, 169–173. [Google Scholar] [CrossRef]
- Khoury, J.M.; Couto, L.F.S.C.; Santos, D.D.A.; Drumond, J.P.S.; Malloy-Diniz, L.; Albuquerque, M.R.; das Neves, M.D.C.L.; Duarte Garcia, F. Bad choices make good stories: The impaired decision-making process and skin conductance response in subjects with smartphone addiction. Front. Psychiatry 2019, 10, 73. [Google Scholar] [CrossRef]
- Deleuze, J.; Nuyens, F.; Rochat, L.; Rothen, S.; Maurage, P.; Billieux, J. Established risk factors for addiction fail to discriminate between healthy gamers and gamers endorsing DSM-5 Internet gaming disorder. J. Behav. Addict. 2017, 6, 516–524. [Google Scholar] [CrossRef]
- Lin, C.-H.; Wang, C.-C.; Sun, J.-H.; Ko, C.-H.; Chiu, Y.-C. Is the clinical version of the Iowa gambling task relevant for assessing choice behavior in cases of Internet addiction? Front. Psychiatry 2019, 10, 232. [Google Scholar] [CrossRef]
- Nikolaidou, M.; Fraser, D.S.; Hinvest, N. Physiological markers of biased decision-making in problematic Internet users. J. Behav. Addict. 2016, 5, 510–517. [Google Scholar] [CrossRef] [Green Version]
- Amlung, M.; Vedelago, L.; Acker, J.; Balodis, I.; MacKillop, J. Steep delay discounting and addictive behavior: A meta-analysis of continuous associations. Addiction 2017, 112, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Mueller, S.M.; Schiebener, J.; Stöckigt, G.; Brand, M. Short-and long-term consequences in decision-making under risk: Immediate feedback about long-term prospects benefits people tending to impulsive processing. J. Cogn. Psychol. 2017, 29, 217–239. [Google Scholar] [CrossRef]
- MacKillop, J.; Amlung, M.T.; Few, L.R.; Ray, L.A.; Sweet, L.H.; Munafò, M.R. Delayed reward discounting and addictive behavior: A meta-analysis. Psychopharmacology 2011, 216, 305–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schäfer, L.; Schmidt, R.; Müller, S.M.; Dietrich, A.; Hilbert, A. The Cards and Lottery Task: Validation of a new paradigm assessing decision making under risk in individuals with severe obesity. Front. Psychiatry 2020, 11, 690. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.M.; Wegmann, E.; Arias, M.G.; Brotóns, E.B.; Giráldez, C.M.; Brand, M. Deficits in executive functions but not in decision making under risk in individuals with problematic social-network use. Compr. Psychiatry 2021, 106, 152228. [Google Scholar] [CrossRef]
- Mihara, S.; Higuchi, S. Cross-sectional and longitudinal epidemiological studies of I nternet gaming disorder: A systematic review of the literature. Psychiatry Clin. Neurosci. 2017, 71, 425–444. [Google Scholar] [CrossRef] [Green Version]
- Hussain, Z.; Wegmann, E.; Yang, H.; Montag, C. Social networks use disorder and associations with depression and anxiety symptoms: A systematic review of recent research in China. Front. Psychol. 2020, 11, 211. [Google Scholar] [CrossRef]
- Müller, A.; Brand, M.; Claes, L.; Demetrovics, Z.; De Zwaan, M.; Fernández-Aranda, F.; Frost, R.O.; Jimenez-Murcia, S.; Lejoyeux, M.; Steins-Loeber, S.; et al. Buying-shopping disorder-is there enough evidence to support its inclusion in ICD-11? CNS Spectr. 2019, 24, 374–379. [Google Scholar] [CrossRef]
- Kayiş, A.R.; Satici, S.A.; Yilmaz, M.F.; Şimşek, D.; Ceyhan, E.; Bakioğlu, F. Big five-personality trait and internet addiction: A meta-analytic review. Comput. Hum. Behav. 2016, 63, 35–40. [Google Scholar] [CrossRef]
- Ryu, H.; Lee, J.Y.; Choi, A.; Park, S.; Kim, D.J.; Choi, J.S. The relationship between impulsivity and Internet gaming disorder in young adults: Mediating effects of interpersonal relationships and depression. Int. J. Environ. Res. Public Health 2018, 15, 458. [Google Scholar] [CrossRef] [Green Version]
- Wegmann, E.; Müller, S.M.; Turel, O.; Brand, M. Interactions of impulsivity, general executive functions, and specific inhibitory control explain symptoms of social-networks-use disorder: An experimental study. Sci. Rep. 2020, 10, 3866. [Google Scholar] [CrossRef] [Green Version]
- Dieter, J.; Hoffmann, S.; Mier, D.; Reinhard, I.; Beutel, M.; Vollstädt-Klein, S.; Kiefer, F.; Mann, K.; Leménager, T. The role of emotional inhibitory control in specific internet addiction–an fMRI study. Behav. Brain Res. 2017, 324, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zander, H.; Claes, L.; Voth, E.M.; De Zwaan, M.; Müller, A. Impulsive behaviors in patients with pathological buying. J. Behav. Addict. 2016, 5, 457–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, A.; Laskowski, N.M.; Wegmann, E.; Steins-Loeber, S.; Brand, M. Problematic Online Buying-Shopping: Is it Time to Considering the Concept of an Online Subtype of Compulsive Buying-Shopping Disorder or a Specific Internet-Use Disorder? Curr. Addict. Rep. 2021, 8, 494–499. [Google Scholar] [CrossRef]
- Kyrios, M.; Trotzke, P.; Lawrence, L.; Fassnacht, D.B.; Ali, K.; Laskowski, N.M.; Müller, A. Behavioral neuroscience of buying-shopping disorder: A review. Curr. Behav. Neurosci. Rep. 2018, 5, 263–270. [Google Scholar] [CrossRef]
- Chamberlain, S.R.; Ioannidis, K.; Grant, J.E. The impact of comorbid impulsive/compulsive disorders in problematic Internet use. J. Behav. Addict. 2018, 7, 269–275. [Google Scholar] [CrossRef]
- Király, O.; Sleczka, P.; Pontes, H.M.; Urbán, R.; Griffiths, M.D.; Demetrovics, Z. Validation of the ten-item Internet Gaming Disorder Test (IGDT-10) and evaluation of the nine DSM-5 Internet Gaming Disorder criteria. Addict. Behav. 2017, 64, 253–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Castro-Calvo, J.; King, D.L.; Stein, D.J.; Brand, M.; Carmi, L.; Chamberlain, S.R.; Demetrovics, Z.; Fineberg, N.A.; Rumpf, H.J.; Yücel, M.; et al. Expert appraisal of criteria for assessing gaming disorder: An international Delphi study. Addiction 2021, 116, 2463–2475. [Google Scholar] [CrossRef] [PubMed]
- Meertens, R.M.; Lion, R. Measuring an individual’s tendency to take risks: The risk propensity scale. J. Appl. Soc. Psychol. 2008, 38, 1506–1520. [Google Scholar] [CrossRef]
- Meule, A.; Vögele, C.; Kübler, A. Psychometrische Evaluation der deutschen Barratt Impulsiveness Scale—Kurzversion (BIS-15). Diagnostica 2011, 57, 126–133. [Google Scholar] [CrossRef]
- Orozco-Cabal, L.; Rodríguez, M.; Herin, D.V.; Gempeler, J.; Uribe, M. Validity and reliability of the abbreviated Barratt Impulsiveness Scale in Spanish (BIS-15S). Rev. Colomb. Psiquiatr. 2010, 39, 93–109. [Google Scholar] [CrossRef] [Green Version]
- Derogatis, L.R.; Melisaratos, N. The Brief Symptom Inventory: An introductory report. Psychol. Med. 1983, 13, 595–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Schneider, E.E.; Schönfelder, S.; Domke-Wolf, M.; Wessa, M. Measuring stress in clinical and nonclinical subjects using a German adaptation of the perceived stress scale. Int. J. Clin. Health Psychol. 2020, 20, 173–181. [Google Scholar] [CrossRef]
- Remor, E. Psychometric properties of a European Spanish version of the Perceived Stress Scale (PSS). Span. J. Psychol. 2006, 9, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegmann, E.; Brandtner, A.; Brand, M. Perceived strain due to COVID-19-related restrictions mediates the effect of social needs and fear of missing out on the risk of a problematic use of social networks. Front. Psychiatry 2021, 12, 623099. [Google Scholar] [CrossRef] [PubMed]
- IBM. IBM SPSS Statistics for Windows, 26.0; IBM Corp.: Armonk, NY, USA, 2019. [Google Scholar]
- Dong, G.; Huang, J.; Du, X. Enhanced reward sensitivity and decreased loss sensitivity in Internet addicts: An fMRI study during a guessing task. J. Psychiatr. Res. 2011, 45, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- González-Bueso, V.; Santamaría, J.J.; Fernández, D.; Merino, L.; Montero, E.; Ribas, J. Association between internet gaming disorder or pathological video-game use and comorbid psychopathology: A comprehensive review. Int. J. Environ. Res. Public Health 2018, 15, 668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trotzke, P.; Starcke, K.; Müller, A.; Brand, M. Cue-induced craving and symptoms of online-buying-shopping disorder interfere with performance on the Iowa Gambling Task modified with online-shopping cues. Addict. Behav. 2019, 96, 82–88. [Google Scholar] [CrossRef]
- Wegmann, E.; Müller, S.M.; Trotzke, P.; Brand, M. Social-networks-related stimuli interferes decision making under ambiguity: Interactions with cue-induced craving and problematic social-networks use. J. Behav. Addict. 2021, 10, 291–301. [Google Scholar] [CrossRef]
- Ostendorf, S.; Müller, S.M.; Brand, M. Neglecting long-term risks: Self-disclosure on social media and its relation to individual decision-making tendencies and problematic social-networks-use. Front. Psychol. 2020, 11, 2913. [Google Scholar] [CrossRef]
- Rochat, L.; Maurage, P.; Heeren, A.; Billieux, J. Let’s open the decision-making umbrella: A framework for conceptualizing and assessing features of impaired decision making in addiction. Neuropsychol. Rev. 2019, 29, 27–51. [Google Scholar] [CrossRef] [PubMed]
- Martini, A.; Dal Lago, D.; Edelstyn, N.M.; Grange, J.A.; Tamburin, S. Impulse control disorder in Parkinson’s disease: A meta-analysis of cognitive, affective, and motivational correlates. Front. Neurol. 2018, 9, 654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dougherty, D.M.; Mathias, C.W.; Marsh, D.M.; Jagar, A.A. Laboratory behavioral measures of impulsivity. Behav. Res. Methods 2005, 37, 82–90. [Google Scholar] [CrossRef] [PubMed]
sIUD Tendency (n = 174) | Control (n = 107) | Comparison | |||||
---|---|---|---|---|---|---|---|
Variable | M | (SD) | M | (SD) | F(1,275) | p | Partial Eta 2 |
CLT net score | 6.11 | (13.42) | 7.96 | (14.85) | 0.37 | 0.545 | 0.001 |
RPS (mean) b | 3.90 | (1.34) | 4.04 | (1.37) | 0.71 | 0.399 | 0.003 |
BIS-15 non-planning (mean) b | 2.24 | (0.62) | 2.25 | (0.64) | 0.03 | 0.867 | <0.001 |
BIS-15 motor (mean) | 2.07 | (0.59) | 1.93 | (0.50) | 0.79 | 0.376 | 0.003 |
BIS-15 attentional (mean) | 2.39 | (0.66) | 2.13 | (0.57) | 10.20 | 0.002 | 0.036 |
BSI: Depression (mean) a | 1.36 | (0.90) | 0.92 | (0.79) | 19.65 | <0.001 | 0.067 |
BSI: Anxiety (mean) | 1.29 | (0.91) | 0.86 | (0.66) | 14.45 | <0.001 | 0.050 |
PSS (sum) a,b | 32.32 | (6.61) | 28.16 | (7.01) | 25.75 | <0.001 | 0.086 |
COVID-19 strain (mean) a,b | 3.11 | (0.72) | 2.77 | (0.80) | 15.71 | <0.001 | 0.103 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | IGDT-10agg | - | ||||||||
2 | CLT net score | −0.028 | - | |||||||
3 | RPS | 0.180 * | −0.110 | - | ||||||
4 | BIS-15 non-planning | 0.125 | −0.236 ** | 0.370 ** | - | |||||
5 | BIS-15 motor | 0.257 ** | −0.037 | 0.274 ** | 0.337 ** | - | ||||
6 | BIS-15 attentional | 0.300 ** | −0.053 | 0.128 | 0.361 ** | 0.366 ** | - | |||
7 | BSI: Depression | 0.305 ** | −0.024 | 0.188 * | 0.166 * | 0.238 ** | 0.352 ** | - | ||
8 | BSI: Anxiety | 0.287 ** | 0.041 | −0.037 | 0.045 | 0.143 | 0.366 ** | 0.646 ** | - | |
9 | PSS | 0.172 * | 0.108 | 0.055 | 0.035 | 0.280 ** | 0.396 ** | 0.673 ** | 0.517 ** | - |
10 | COVID-19 strain | 0.170 * | −0.098 | −0.012 | −0.019 | 0.058 | 0.097 | 0.014 | 0.249 ** | 0.034 |
Coefficients | Overall Model Results | ||||||
---|---|---|---|---|---|---|---|
Model | Predictors | β | T | p | F | p | R2 |
1 | BIS-15 motor (mean) | 0.257 | 30.48 | 0.001 | 4.44 | 0.005 | 0.073 |
CLT net score | −0.027 | −0.365 | 0.716 | ||||
Interaction | 0.080 | 10.08 | 0.281 | ||||
2 | BIS-15 motor (mean) | 0.202 | 20.60 | 0.010 | 5.69 | 0.001 | 0.091 |
RPS (mean) | 0.114 | 10.50 | 0.136 | ||||
Interaction | 0.113 | 10.52 | 0.132 | ||||
3 | BIS-15 attentional (mean) | 0.281 | 30.82 | <0.001 | 6.54 | <0.001 | 0.103 |
CLT net score | −0.009 | −00.12 | 0.904 | ||||
Interaction | 0.117 | 10.59 | 0.114 | ||||
4 | BIS-15 attentional (mean) | 0.277 | 30.67 | <0.001 | 7.05 | <0.001 | 0.111 |
RPS (mean) | 0.146 | 10.99 | 0.048 | ||||
Interaction | 0.020 | 00.26 | 0.795 | ||||
5 | BSI: Depression (mean) | 0.305 | 40.18 | <0.001 | 5.99 | 0.001 | 0.096 |
CLT net score | −0.020 | −00.28 | 0.784 | ||||
Interaction | 0.050 | 00.68 | 0.497 | ||||
6 | BSI: Depression (mean) | 0.276 | 30.72 | <0.001 | 6.97 | <0.001 | 0.110 |
RPS (mean) | 0.125 | 10.69 | 0.093 | ||||
Interaction | 0.035 | 00.48 | 0.633 | ||||
7 | BSI: Anxiety (mean) | 0.291 | 30.97 | <0.001 | 5.40 | 0.001 | 0.087 |
CLT net score | −0.035 | −00.48 | 0.632 | ||||
Interaction | 0.054 | 00.73 | 0.467 | ||||
8 | BSI: Anxiety (mean) | 0.289 | 40.01 | <0.001 | 7.90 | <0.001 | 0.122 |
RPS (mean) | 0.196 | 20.72 | 0.007 | ||||
Interaction | 0.060 | 00.83 | 0.411 | ||||
9 | PSS (sum) | 0.158 | 20.11 | 0.037 | 3.72 | 0.013 | 0.062 |
RPS (mean) | 0.170 | 20.29 | 0.023 | ||||
Interaction | 0.053 | 00.71 | 0.477 | ||||
10 | COVID-19 strain (mean) | 0.173 | 20.32 | 0.021 | 3.75 | 0.012 | 0.062 |
RPS (mean) | 0.183 | 20.45 | 0.015 | ||||
Interaction | 0.006 | 00.08 | 0.935 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, S.M.; Wegmann, E.; Garcia Arías, M.; Bernabéu Brotóns, E.; Marchena Giráldez, C.; Brand, M. Decision Making and Risk Propensity in Individuals with Tendencies towards Specific Internet-Use Disorders. Brain Sci. 2022, 12, 201. https://doi.org/10.3390/brainsci12020201
Müller SM, Wegmann E, Garcia Arías M, Bernabéu Brotóns E, Marchena Giráldez C, Brand M. Decision Making and Risk Propensity in Individuals with Tendencies towards Specific Internet-Use Disorders. Brain Sciences. 2022; 12(2):201. https://doi.org/10.3390/brainsci12020201
Chicago/Turabian StyleMüller, Silke M., Elisa Wegmann, María Garcia Arías, Elena Bernabéu Brotóns, Carlos Marchena Giráldez, and Matthias Brand. 2022. "Decision Making and Risk Propensity in Individuals with Tendencies towards Specific Internet-Use Disorders" Brain Sciences 12, no. 2: 201. https://doi.org/10.3390/brainsci12020201
APA StyleMüller, S. M., Wegmann, E., Garcia Arías, M., Bernabéu Brotóns, E., Marchena Giráldez, C., & Brand, M. (2022). Decision Making and Risk Propensity in Individuals with Tendencies towards Specific Internet-Use Disorders. Brain Sciences, 12(2), 201. https://doi.org/10.3390/brainsci12020201