Brain State Relays Self-Processing and Heartbeat-Evoked Cortical Responses
Abstract
:1. Introduction
2. Heartbeat-Evoked Cortical Responses and Self-Processing
3. What Is Brain State?
4. Brain State and Self-Processing
4.1. Arousal
4.2. Attention
4.3. Mood
4.4. Summary
5. Brain State and Heartbeat-Evoked Cortical Responses
5.1. Arousal
5.2. Attention
5.3. Mood
5.4. Summary
6. Future Direction
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, P.; Wang, M.; Northoff, G. Linking bodily, environmental and mental states in the self-A three-level model based on a meta-analysis. Neurosci. Biobehav. Rev. 2020, 115, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.D. How do you feel—Now? The anterior insula and human awareness. Nat. Rev. Neurosci. 2009, 10, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Park, H.D.; Correia, S.; Ducorps, A.; Tallon-Baudry, C. Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nat. Neurosci. 2014, 17, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Seth, A.K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 2013, 17, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Tsakiris, M.; Critchley, H. Interoception beyond homeostasis: Affect, cognition and mental health. Philos. Trans. R Soc. Lond. B Biol. Sci. 2016, 371, 20160002. [Google Scholar] [CrossRef]
- Azzalini, D.; Rebollo, I.; Tallon-Baudry, C. Visceral Signals Shape Brain Dynamics and Cognition. Trends Cogn. Sci. 2019, 23, 488–509. [Google Scholar] [CrossRef]
- Coll, M.-P.; Hobson, H.; Bird, G.; Murphy, J. Systematic review and meta-analysis of the relationship between the heartbeat-evoked potential and interoception. Neurosci. Biobehav. Rev. 2021, 122, 190–200. [Google Scholar] [CrossRef]
- Schandry, R.; Sparrer, B.; Weitkunat, R. From the heart to the brain: A study of heartbeat contingent scalp potentials. Int. J. Neurosci. 1986, 30, 261–275. [Google Scholar] [CrossRef]
- Blanke, O. Multisensory brain mechanisms of bodily self-consciousness. Nat. Rev. Neurosci. 2012, 13, 556–571. [Google Scholar] [CrossRef]
- Park, H.-D.; Bernasconi, F.; Bello-Ruiz, J.; Pfeiffer, C.; Salomon, R.; Blanke, O. Transient modulations of neural responses to heartbeats covary with bodily self-consciousness. J. Neurosci. 2016, 36, 8453–8460. [Google Scholar] [CrossRef]
- Park, H.D.; Bernasconi, F.; Salomon, R.; Tallon-Baudry, C.; Spinelli, L.; Seeck, M.; Schaller, K.; Blanke, O. Neural Sources and Underlying Mechanisms of Neural Responses to Heartbeats, and their Role in Bodily Self-consciousness: An Intracranial EEG Study. Cereb. Cortex 2018, 28, 2351–2364. [Google Scholar] [CrossRef] [PubMed]
- Sel, A.; Azevedo, R.T.; Tsakiris, M. Heartfelt Self: Cardio-Visual Integration Affects Self-Face Recognition and Interoceptive Cortical Processing. Cereb. Cortex 2017, 27, 5144–5155. [Google Scholar] [CrossRef] [PubMed]
- Lenggenhager, B.; Tadi, T.; Metzinger, T.; Blanke, O. Video Ergo Sum: Manipulating Bodily Self-Consciousness. Science 2007, 317, 1096–1099. [Google Scholar] [CrossRef] [PubMed]
- Faivre, N.; Salomon, R.; Blanke, O. Visual consciousness and bodily self-consciousness. Curr. Opin. Neurol. 2015, 28, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Al, E.; Iliopoulos, F.; Forschack, N.; Nierhaus, T.; Grund, M.; Motyka, P.; Gaebler, M.; Nikulin, V.V.; Villringer, A. Heart–brain interactions shape somatosensory perception and evoked potentials. Proc. Natl. Acad. Sci. USA 2020, 117, 10575–10584. [Google Scholar] [CrossRef]
- Babo-Rebelo, M.; Richter, C.G.; Tallon-Baudry, C. Neural responses to heartbeats in the default network encode the self in spontaneous thoughts. J. Neurosci. 2016, 36, 7829–7840. [Google Scholar] [CrossRef]
- Babo-Rebelo, M.; Wolpert, N.; Adam, C.; Hasboun, D.; Tallon-Baudry, C. Is the cardiac monitoring function related to the self in both the default network and right anterior insula? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20160004. [Google Scholar] [CrossRef]
- Babo-Rebelo, M.; Buot, A.; Tallon-Baudry, C. Neural responses to heartbeats distinguish self from other during imagination. NeuroImage 2019, 191, 10–20. [Google Scholar] [CrossRef]
- Azzalini, D.; Buot, A.; Palminteri, S.; Tallon-Baudry, C. Responses to Heartbeats in Ventromedial Prefrontal Cortex Contribute to Subjective Preference-Based Decisions. J. Neurosci. 2021, 41, 5102–5114. [Google Scholar] [CrossRef]
- Engelen, T.; Buot, A.; Grèzes, J.; Tallon-Baudry, C. Whose emotion is it? Perspective matters to understand brain-body interactions in emotions. NeuroImage 2023, 268, 119867. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Xie, M.; Ding, N.; Zhang, Y.; Qin, P. Dual interaction between heartbeat-evoked responses and stimuli. NeuroImage 2022, 266, 119817. [Google Scholar] [CrossRef] [PubMed]
- McCormick, D.A.; Nestvogel, D.B.; He, B.J. Neuromodulation of Brain State and Behavior. Annu. Rev. Neurosci. 2020, 43, 391–415. [Google Scholar] [CrossRef] [PubMed]
- Stevner, A.B.A.; Vidaurre, D.; Cabral, J.; Rapuano, K.; Nielsen, S.F.V.; Tagliazucchi, E.; Laufs, H.; Vuust, P.; Deco, G.; Woolrich, M.W.; et al. Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep. Nat. Commun. 2019, 10, 1035. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Gold, J.I. Pupil Size as a Window on Neural Substrates of Cognition. Trends Cogn. Sci. 2020, 24, 466–480. [Google Scholar] [CrossRef]
- McGinley, M.J.; Vinck, M.; Reimer, J.; Batista-Brito, R.; Zagha, E.; Cadwell, C.R.; Tolias, A.S.; Cardin, J.A.; McCormick, D.A. Waking State: Rapid Variations Modulate Neural and Behavioral Responses. Neuron 2015, 87, 1143–1161. [Google Scholar] [CrossRef]
- Vidaurre, D.; Smith, S.M.; Woolrich, M.W. Brain network dynamics are hierarchically organized in time. Proc. Natl. Acad. Sci. USA 2017, 114, 12827–12832. [Google Scholar] [CrossRef]
- Wegner, D.M.; Giuliano, T. Arousal-induced attention to self. J. Pers. Soc. Psychol. 1980, 38, 719. [Google Scholar] [CrossRef]
- Wong, C.W.; DeYoung, P.N.; Liu, T.T. Differences in the resting-state fMRI global signal amplitude between the eyes open and eyes closed states are related to changes in EEG vigilance. NeuroImage 2016, 124, 24–31. [Google Scholar] [CrossRef]
- Muller, B.; Gabelein, W.D.; Schulz, H. A taxonomic analysis of sleep stages. Sleep 2006, 29, 967–974. [Google Scholar] [CrossRef]
- Lin, C.T.; Huang, K.C.; Chao, C.F.; Chen, J.A.; Chiu, T.W.; Ko, L.W.; Jung, T.P. Tonic and phasic EEG and behavioral changes induced by arousing feedback. NeuroImage 2010, 52, 633–642. [Google Scholar] [CrossRef]
- Sadaghiani, S.; Kleinschmidt, A. Brain Networks and α-Oscillations: Structural and Functional Foundations of Cognitive Control. Trends Cogn. Sci. 2016, 20, 805–817. [Google Scholar] [CrossRef]
- del Giudice, R.; Lechinger, J.; Wislowska, M.; Heib, D.P.; Hoedlmoser, K.; Schabus, M. Oscillatory brain responses to own names uttered by unfamiliar and familiar voices. Brain Res. 2014, 1591, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Alzueta, E.; Melcón, M.; Jensen, O.; Capilla, A. The ‘Narcissus Effect’: Top-down alpha-beta band modulation of face-related brain areas during self-face processing. NeuroImage 2020, 213, 116754. [Google Scholar] [CrossRef] [PubMed]
- Bu-Omer, H.M.; Gofuku, A.; Sato, K.; Miyakoshi, M. Parieto-Occipital Alpha and Low-Beta EEG Power Reflect Sense of Agency. Brain Sci. 2021, 11, 743. [Google Scholar] [CrossRef] [PubMed]
- Blume, C.; Del Giudice, R.; Wislowska, M.; Heib, D.P.J.; Schabus, M. Standing sentinel during human sleep: Continued evaluation of environmental stimuli in the absence of consciousness. NeuroImage 2018, 178, 638–648. [Google Scholar] [CrossRef]
- Sui, J.; Rotshtein, P. Self-prioritization and the attentional systems. Curr. Opin. Psychol. 2019, 29, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, G.W.; Sui, J. Attentional control and the self: The Self-Attention Network (SAN). Cogn. Neurosci. 2016, 7, 5–17. [Google Scholar] [CrossRef]
- Sui, J.; Han, S. Self-construal priming modulates neural substrates of self-awareness. Psychol. Sci. 2007, 18, 861–866. [Google Scholar] [CrossRef]
- Keyes, H.; Dlugokencka, A. Do I have my attention? Speed of processing advantages for the self-face are not driven by automatic attention capture. PLoS ONE 2014, 9, e110792. [Google Scholar] [CrossRef]
- Golubickis, M.; Macrae, C.N. That’s me in the spotlight: Self-relevance modulates attentional breadth. Psychon. Bull. Rev. 2021, 28, 1915–1922. [Google Scholar] [CrossRef]
- Lin, S.H.; Yeh, Y.Y. Attentional load and the consciousness of one’s own name. Conscious Cogn. 2014, 26, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, M.J.; Nowicka, M.M.; Bola, M.; Nowicka, A. Unconscious Detection of One’s Own Image. Psychol. Sci. 2019, 30, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Scheier, M.F.; Carver, C.S. Self-focused attention and the experience of emotion: Attraction, repulsion, elation, and depression. J. Pers. Soc. Psychol. 1977, 35, 625–636. [Google Scholar] [CrossRef]
- Tracy, A.; Jopling, E.; LeMoult, J. The effect of self-referential processing on anxiety in response to naturalistic and laboratory stressors. Cogn. Emot. 2021, 35, 1320–1333. [Google Scholar] [CrossRef] [PubMed]
- Sedikides, C. Mood as a determinant of attentional focus. Cogn. Emot. 1992, 6, 129–148. [Google Scholar] [CrossRef]
- Sui, J.; Ohrling, E.; Humphreys, G.W. Negative mood disrupts self- and reward-biases in perceptual matching. Q. J. Exp. Psychol. 2016, 69, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Wang, Z.; Li, C.; Gao, X. Prioritised self-referential processing is modulated by emotional arousal. Q. J. Exp. Psychol. 2020, 73, 688–697. [Google Scholar] [CrossRef]
- Paulus, M.P.; Stein, M.B. Interoception in anxiety and depression. Brain Struct. Funct. 2010, 214, 451–463. [Google Scholar] [CrossRef]
- Benau, E.M.; Hill, K.E.; Atchley, R.A.; O’Hare, A.J.; Gibson, L.J.; Hajcak, G.; Ilardi, S.S.; Foti, D. Increased neural sensitivity to self-relevant stimuli in major depressive disorder. Psychophysiology 2019, 56, e13345. [Google Scholar] [CrossRef]
- Hsu, T.Y.; Liu, T.L.; Cheng, P.Z.; Lee, H.C.; Lane, T.J.; Duncan, N.W. Depressive rumination is correlated with brain responses during self-related processing. J. Psychiatry Neurosci. 2021, 46, E518–E527. [Google Scholar] [CrossRef]
- Sokol, Y.; Rosensweig, C.; Levin, C.; Linzer, M. Anxiety and temporal self-appraisal: How people with anxiety evaluate themselves over time. J. Affect. Disord. 2022, 296, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Tang, X.; Li, H.; Hu, Q.; Cui, H.; Zhang, L.; Li, W.; Zhu, Z.; Wang, J.; Li, C. Altered Interoceptive Processing in Generalized Anxiety Disorder-A Heartbeat-Evoked Potential Research. Front. Psychiatry 2019, 10, 616. [Google Scholar] [CrossRef] [PubMed]
- Schulz, A.; Dierolf, A.M.; Lutz, A.P.C.; Voderholzer, U.; Koch, S.; Bach, M.; Asenstorfer, C.; Michaux, G.; Mertens, V.-C.; Vögele, C. Higher cardiovascular activation, but normal heartbeat-evoked potentials and cardiac interoceptive accuracy in somatoform disorders and major depressive disorder. Psychiatry Res. Commun. 2022, 2, 100052. [Google Scholar] [CrossRef]
- Terhaar, J.; Viola, F.C.; Bär, K.J.; Debener, S. Heartbeat evoked potentials mirror altered body perception in depressed patients. Clin. Neurophysiol. 2012, 123, 1950–1957. [Google Scholar] [CrossRef] [PubMed]
- Zwienenberg, L.; van Dijk, H.; Enriquez-Geppert, S.; van der Vinne, N.; Gevirtz, R.; Gordon, E.; Sack, A.T.; Arns, M. Heartbeat-Evoked Potential in Major Depressive Disorder: A Biomarker for Differential Treatment Prediction between Venlafaxine and rTMS? Neuropsychobiology 2023, 82, 130–139. [Google Scholar] [CrossRef]
- Müller, L.E.; Schulz, A.; Andermann, M.; Gäbel, A.; Gescher, D.M.; Spohn, A.; Herpertz, S.C.; Bertsch, K. Cortical Representation of Afferent Bodily Signals in Borderline Personality Disorder: Neural Correlates and Relationship to Emotional Dysregulation. JAMA Psychiatry 2015, 72, 1077–1086. [Google Scholar] [CrossRef]
- Gray, M.A.; Taggart, P.; Sutton, P.M.; Groves, D.; Holdright, D.R.; Bradbury, D.; Brull, D.; Critchley, H.D. A cortical potential reflecting cardiac function. Proc. Natl. Acad. Sci. USA 2007, 104, 6818–6823. [Google Scholar] [CrossRef]
- Schulz, A.; Strelzyk, F.; Ferreira de Sá, D.S.; Naumann, E.; Vögele, C.; Schächinger, H. Cortisol rapidly affects amplitudes of heartbeat-evoked brain potentials--implications for the contribution of stress to an altered perception of physical sensations? Psychoneuroendocrinology 2013, 38, 2686–2693. [Google Scholar] [CrossRef]
- Pyka, M.; Hahn, T.; Heider, D.; Krug, A.; Sommer, J.; Kircher, T.; Jansen, A. Baseline activity predicts working memory load of preceding task condition. Hum. Brain Mapp. 2013, 34, 3010–3022. [Google Scholar] [CrossRef]
- López Zunini, R.A.; Thivierge, J.P.; Kousaie, S.; Sheppard, C.; Taler, V. Alterations in resting-state activity relate to performance in a verbal recognition task. PLoS ONE 2013, 8, e65608. [Google Scholar] [CrossRef]
- Boly, M.; Balteau, E.; Schnakers, C.; Degueldre, C.; Moonen, G.; Luxen, A.; Phillips, C.; Peigneux, P.; Maquet, P.; Laureys, S. Baseline brain activity fluctuations predict somatosensory perception in humans. Proc. Natl. Acad. Sci. USA 2007, 104, 12187–12192. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Nakao, T.; Xu, J.; Qin, P.; Chaves, P.; Heinzel, A.; Duncan, N.; Lane, T.; Yen, N.S.; Tsai, S.Y.; et al. Resting state glutamate predicts elevated pre-stimulus alpha during self-relatedness: A combined EEG-MRS study on “rest-self overlap”. Soc. Neurosci. 2016, 11, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Grimm, S.; Duncan, N.W.; Fan, Y.; Huang, Z.; Lane, T.; Weng, X.; Bajbouj, M.; Northoff, G. Spontaneous activity in default-mode network predicts ascription of self-relatedness to stimuli. Soc. Cogn. Affect. Neurosci. 2016, 11, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.L.; Lieberman, M.D. Why People Are Always Thinking about Themselves: Medial Prefrontal Cortex Activity during Rest Primes Self-referential Processing. J. Cogn. Neurosci. 2018, 30, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Lustenberger, C.; Patel, Y.A.; Alagapan, S.; Page, J.M.; Price, B.; Boyle, M.R.; Fröhlich, F. High-density EEG characterization of brain responses to auditory rhythmic stimuli during wakefulness and NREM sleep. NeuroImage 2018, 169, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Posner, M.I.; Petersen, S.E. The attention system of the human brain. Annu. Rev. Neurosci. 1990, 13, 25–42. [Google Scholar] [CrossRef]
- Bless, H.; Fiedler, K. Mood and the regulation of information processing and behavior. In Affect in Social Thinking and Behavior, 1st ed.; Forgas, J.P., Ed.; Psychology Press: London, UK, 2006; Volume 6584, pp. 65–84. [Google Scholar]
- Forgas, J.P. Mood Effects on Cognition: Affective Influences on the Content and Process of Information Processing and Behavior. In Emotions and Affect in Human Factors and Human-Computer Interaction; Elsevier: Amsterdam, The Netherlands, 2017; pp. 89–122. [Google Scholar]
- McEwen, B.S.; Sapolsky, R.M. Stress and cognitive function. Curr. Opin. Neurobiol. 1995, 5, 205–216. [Google Scholar] [CrossRef]
- Mendl, M. Performing under pressure: Stress and cognitive function. Appl. Anim. Behav. Sci. 1999, 65, 221–244. [Google Scholar] [CrossRef]
- Perrin, F.; García-Larrea, L.; Mauguière, F.; Bastuji, H. A differential brain response to the subject’s own name persists during sleep. Clin. Neurophysiol. 1999, 110, 2153–2164. [Google Scholar] [CrossRef]
- Qin, P.; Grimm, S.; Duncan, N.W.; Holland, G.; Guo, J.S.; Fan, Y.; Weigand, A.; Baudewig, J.; Bajbouj, M.; Northoff, G. Self-specific stimuli interact differently than non-self-specific stimuli with eyes-open versus eyes-closed spontaneous activity in auditory cortex. Front. Hum. Neurosci. 2013, 7, 437. [Google Scholar] [CrossRef]
- Northoff, G. Is the self a higher-order or fundamental function of the brain? The “basis model of self-specificity” and its encoding by the brain’s spontaneous activity. Cogn. Neurosci. 2016, 7, 203–222. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.D.; Harrison, N.A. Visceral influences on brain and behavior. Neuron 2013, 77, 624–638. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Ramautar, J.R.; Colombo, M.A.; Stoffers, D.; Gómez-Herrero, G.; van der Meijden, W.P.; Te Lindert, B.H.; van der Werf, Y.D.; Van Someren, E.J. I Keep a Close Watch on This Heart of Mine: Increased Interoception in Insomnia. Sleep 2016, 39, 2113–2124. [Google Scholar] [CrossRef]
- Lechinger, J.; Heib, D.P.; Gruber, W.; Schabus, M.; Klimesch, W. Heartbeat-related EEG amplitude and phase modulations from wakefulness to deep sleep: Interactions with sleep spindles and slow oscillations. Psychophysiology 2015, 52, 1441–1450. [Google Scholar] [CrossRef] [PubMed]
- Simor, P.; Bogdány, T.; Bódizs, R.; Perakakis, P. Cortical monitoring of cardiac activity during rapid eye movement sleep: The heartbeat evoked potential in phasic and tonic rapid-eye-movement microstates. Sleep 2021, 44, zsab100. [Google Scholar] [CrossRef]
- Schandry, R.; Montoya, P. Event-related brain potentials and the processing of cardiac activity. Biol. Psychol. 1996, 42, 75–85. [Google Scholar] [CrossRef]
- Montoya, P.; Schandry, R.; Müller, A. Heartbeat evoked potentials (HEP): Topography and influence of cardiac awareness and focus of attention. Electroencephalogr. Clin. Neurophysiol. 1993, 88, 163–172. [Google Scholar] [CrossRef]
- García-Cordero, I.; Esteves, S.; Mikulan, E.P.; Hesse, E.; Baglivo, F.H.; Silva, W.; García, M.D.C.; Vaucheret, E.; Ciraolo, C.; García, H.S.; et al. Attention, in and Out: Scalp-Level and Intracranial EEG Correlates of Interoception and Exteroception. Front. Neurosci. 2017, 11, 411. [Google Scholar] [CrossRef]
- Petzschner, F.H.; Weber, L.A.; Wellstein, K.V.; Paolini, G.; Do, C.T.; Stephan, K.E. Focus of attention modulates the heartbeat evoked potential. NeuroImage 2019, 186, 595–606. [Google Scholar] [CrossRef]
- Couto, B.; Adolfi, F.; Velasquez, M.; Mesow, M.; Feinstein, J.; Canales-Johnson, A.; Mikulan, E.; Martínez-Pernía, D.; Bekinschtein, T.; Sigman, M.; et al. Heart evoked potential triggers brain responses to natural affective scenes: A preliminary study. Auton. Neurosci. 2015, 193, 132–137. [Google Scholar] [CrossRef]
- Luft, C.D.; Bhattacharya, J. Aroused with heart: Modulation of heartbeat evoked potential by arousal induction and its oscillatory correlates. Sci. Rep. 2015, 5, 15717. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Takei, Y.; Umeda, S.; Mimura, M.; Fukuda, M. Alterations of Heartbeat Evoked Magnetic Fields Induced by Sounds of Disgust. Front. Psychiatry 2020, 11, 683. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Xie, M.; Liu, Y.; Zhang, X.; Jiang, L.; Bao, H.; Qin, P.; Han, J. Brain State Relays Self-Processing and Heartbeat-Evoked Cortical Responses. Brain Sci. 2023, 13, 832. https://doi.org/10.3390/brainsci13050832
Huang Y, Xie M, Liu Y, Zhang X, Jiang L, Bao H, Qin P, Han J. Brain State Relays Self-Processing and Heartbeat-Evoked Cortical Responses. Brain Sciences. 2023; 13(5):832. https://doi.org/10.3390/brainsci13050832
Chicago/Turabian StyleHuang, Ying, Musi Xie, Yunhe Liu, Xinyu Zhang, Liubei Jiang, Han Bao, Pengmin Qin, and Junrong Han. 2023. "Brain State Relays Self-Processing and Heartbeat-Evoked Cortical Responses" Brain Sciences 13, no. 5: 832. https://doi.org/10.3390/brainsci13050832
APA StyleHuang, Y., Xie, M., Liu, Y., Zhang, X., Jiang, L., Bao, H., Qin, P., & Han, J. (2023). Brain State Relays Self-Processing and Heartbeat-Evoked Cortical Responses. Brain Sciences, 13(5), 832. https://doi.org/10.3390/brainsci13050832