A Systematic Review of Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Potential Treatment for Glioblastoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review
2.2. Data Extraction
2.3. Outcomes
2.4. Risk of Bias Assessment
2.5. Statistical Analysis
3. Results
3.1. Literature Review
3.2. Data Analysis
3.2.1. Clinical Studies
3.2.2. Preclinical Studies
4. Discussion
4.1. Molecular Mechanisms of MSC-EVs in GBM Therapy
4.2. Targeted Therapies Using MSC-EVs
4.3. Comparative Analysis with the Existing Literature
4.4. Challenges, Considerations, and Future Developments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Altaner, C. Glioblastoma and stem cells. Neoplasma 2008, 55, 369–374. [Google Scholar] [PubMed]
- Altaner, C.; Altanerova, V. Stem cell based glioblastoma gene therapy. Neoplasma 2012, 59, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Abadi, B.; Ahmadi-Zeidabadi, M.; Dini, L.; Vergallo, C. Stem cell-based therapy treating glioblastoma multiforme. Hematol. Oncol. Stem Cell Ther. 2021, 14, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Altaner, C. Prodrug cancer gene therapy. Cancer Lett. 2008, 270, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Aboody, K.S.; Najbauer, J.; Danks, M.K. Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther. 2008, 15, 739–752. [Google Scholar] [CrossRef]
- Abdi, Z.; Eskandary, H.; Nematollahi-Mahani, S.N. Effects of Two Types of Human Cells on Outgrowth of Human Glioma in Rats. Turk. Neurosurg. 2018, 28, 19–28. [Google Scholar] [CrossRef]
- Aleynik, A.; Gernavage, K.M.; Mourad, Y.S.; Sherman, L.S.; Liu, K.; Gubenko, Y.A.; Rameshwar, P. Stem cell delivery of therapies for brain disorders. Clin. Transl. Med. 2014, 3, 24. [Google Scholar] [CrossRef]
- Ali, S.; Xia, Q.; Muhammad, T.; Liu, L.; Meng, X.; Bars-Cortina, D.; Khan, A.A.; Huang, Y.; Dong, L. Glioblastoma Therapy: Rationale for a Mesenchymal Stem Cell-based Vehicle to Carry Recombinant Viruses. Stem Cell Rev. Rep. 2022, 18, 523–543. [Google Scholar] [CrossRef]
- Altaner, C.; Altanerova, V.; Cihova, M.; Ondicova, K.; Rychly, B.; Baciak, L.; Mravec, B. Complete regression of glioblastoma by mesenchymal stem cells mediated prodrug gene therapy simulating clinical therapeutic scenario. Int. J. Cancer 2014, 134, 1458–1465. [Google Scholar] [CrossRef]
- Allahverdi, A.; Arefian, E.; Soleimani, M.; Ai, J.; Nahanmoghaddam, N.; Yousefi-Ahmadipour, A.; Ebrahimi-Barough, S. MicroRNA-4731-5p delivered by AD-mesenchymal stem cells induces cell cycle arrest and apoptosis in glioblastoma. J. Cell. Physiol. 2020, 235, 8167–8175. [Google Scholar] [CrossRef]
- Balyasnikova, I.V.; Ferguson, S.D.; Sengupta, S.; Han, Y.; Lesniak, M.S. Mesenchymal stem cells modified with a single-chain antibody against EGFRvIII successfully inhibit the growth of human xenograft malignant glioma. PLoS ONE 2010, 5, e9750. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.K.Y.; Lam, P.Y.P. Human mesenchymal stem cells and their paracrine factors for the treatment of brain tumors. Cancer Gene Ther. 2013, 20, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Oraee-Yazdani, S.; Akhlaghpasand, M.; Shokri, G.; Rostami, F.; Golmohammadi, M.; Jamshidi-Adegani, F.; Arefian, E.; Hafizi, M.; Zomorrod, M.S.; Oraee-Yazdani, M.; et al. Intracerebral Administration of Autologous Mesenchymal Stem Cells as HSV-TK Gene Vehicle for Treatment of Glioblastoma Multiform: Safety and Feasibility Assessment. Mol. Neurobiol. 2021, 58, 4425–4436. [Google Scholar] [CrossRef] [PubMed]
- Oraee-Yazdani, S.; Tavanaei, R.; Rostami, F.; Hajarizadeh, A.; Mehrabadi, M.; Akhlaghpasand, M.; Tamaddon, M.; Khannejad, S.; Yazdani, K.O.; Zali, A. Suicide gene therapy using allogeneic adipose tissue-derived mesenchymal stem cell gene delivery vehicles in recurrent glioblastoma multiforme: A first-in-human, dose-escalation, phase I clinical trial. J. Transl. Med. 2023, 21, 350. [Google Scholar] [CrossRef] [PubMed]
- Oraee-Yazdani, S.; Akhlaghpasand, M.; Rostami, F.; Golmohammadi, M.; Tavanaei, R.; Shokri, G.; Hafizi, M.; Oraee-Yazdani, M.; Zali, A.-R.; Soleimani, M. Case report: Stem cell-based suicide gene therapy mediated by the herpes simplex virus thymidine kinase gene reduces tumor progression in multifocal glioblastoma. Front. Neurol. 2023, 14, 1060180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yao, S.; Liu, C.; Jiang, Y. Tumor tropic delivery of doxorubicin-polymer conjugates using mesenchymal stem cells for glioma therapy. Biomaterials 2015, 39, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Bryukhovetskiy, I.; Bryukhovetsky, A.; Khotimchenko, Y.; Mischenko, P.; Tolok, E.; Khotimchenko, R. Combination of the multipotent mesenchymal stromal cell transplantation with administration of temozolomide increases survival of rats with experimental glioblastoma. Mol. Med. Rep. 2015, 12, 2828–2834. [Google Scholar] [CrossRef]
- Pacioni, S.; D’alessandris, Q.G.; Giannetti, S.; Morgante, L.; De Pascalis, I.; Coccè, V.; Bonomi, A.; Pascucci, L.; Alessandri, G.; Pessina, A.; et al. Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts. Stem Cell Res. Ther. 2015, 6, 194. [Google Scholar] [CrossRef]
- Jiang, W.; Finniss, S.; Cazacu, S.; Xiang, C.; Brodie, Z.; Mikkelsen, T.; Poisson, L.; Shackelford, D.B.; Brodie, C. Repurposing phenformin for the targeting of glioma stem cells and the treatment of glioblastoma. Oncotarget 2016, 7, 56456–56470. [Google Scholar] [CrossRef]
- Pacioni, S.; D’alessandris, Q.G.; Giannetti, S.; Morgante, L.; Coccè, V.; Bonomi, A.; Buccarelli, M.; Pascucci, L.; Alessandri, G.; Pessina, A.; et al. Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts. Stem Cell Res. Ther. 2017, 8, 53. [Google Scholar] [CrossRef]
- Malik, Y.S.; Sheikh, M.A.; Xing, Z.; Guo, Z.; Zhu, X.; Tian, H.; Chen, X. Polylysine-modified polyethylenimine polymer can generate genetically engineered mesenchymal stem cells for combinational suicidal gene therapy in glioblastoma. Acta Biomater. 2018, 80, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Cao, M.; Zhang, F.; Zhang, J.; Duan, X.; Lu, L.; Yang, Z.; Zhang, X.; Zhu, W.; Zhang, Q.; et al. Peritumoral administration of IFNβ upregulated mesenchymal stem cells inhibits tumor growth in an orthotopic, immunocompetent rat glioma model. J. Immunother. Cancer 2020, 8, e000164. [Google Scholar] [CrossRef] [PubMed]
- Tu, G.X.E.; Ho, Y.K.; Ng, Z.X.; Teo, K.J.; Yeo, T.T.; Too, H.-P. A facile and scalable in production non-viral gene engineered mesenchymal stem cells for effective suppression of temozolomide-resistant (TMZR) glioblastoma growth. Stem Cell Res. Ther. 2020, 11, 391. [Google Scholar] [CrossRef] [PubMed]
- Mohme, M.; Maire, C.L.; Geumann, U.; Schliffke, S.; Dührsen, L.; Fita, K.D.; Akyüz, N.; Binder, M.; Westphal, M.; Guenther, C.; et al. Local Intracerebral Immunomodulation Using Interleukin-Expressing Mesenchymal Stem Cells in Glioblastoma. Clin. Cancer Res. 2020, 26, 2626–2639. [Google Scholar] [CrossRef]
- Shimizu, Y.; Gumin, J.; Gao, F.; Hossain, A.; Shpall, E.J.; Kondo, A.; Kerrigan, B.C.P.; Yang, J.; Ledbetter, D.; Fueyo, J.; et al. Characterization of patient-derived bone marrow human mesenchymal stem cells as oncolytic virus carriers for the treatment of glioblastoma. J. Neurosurg. 2022, 136, 757–767. [Google Scholar] [CrossRef]
- Park, J.H.; Hothi, P.; de Lomana, A.L.G.; Pan, M.; Calder, R.; Turkarslan, S.; Wu, W.-J.; Lee, H.; Patel, A.P.; Cobbs, C.; et al. Gene regulatory network topology governs resistance and treatment escape in glioma stem-like cells. Sci. Adv. 2024, 10, eadj7706. [Google Scholar] [CrossRef]
- Clavreul, A.; Pourbaghi-Masouleh, M.; Roger, E.; Lautram, N.; Montero-Menei, C.N.; Menei, P. Human mesenchymal stromal cells as cellular drug-delivery vectors for glioblastoma therapy: A good deal? J. Exp. Clin. Cancer Res. 2017, 36, 135. [Google Scholar] [CrossRef]
- Chang, D.Y.; Jung, J.H.; Kim, A.A.; Marasini, S.; Lee, Y.J.; Paek, S.H.; Kim, S.S.; Suh-Kim, H. Combined effects of mesenchymal stem cells carrying cytosine deaminase gene with 5-fluorocytosine and temozolomide in orthotopic glioma model. Am. J. Cancer Res. 2020, 10, 1429–1441. [Google Scholar]
- Agosti, E.; Zeppieri, M.; De Maria, L.; Tedeschi, C.; Fontanella, M.M.; Panciani, P.P.; Ius, T. Glioblastoma Immunotherapy: A Systematic Review of the Present Strategies and Prospects for Advancements. Int. J. Mol. Sci. 2023, 24, 15037. [Google Scholar] [CrossRef]
- Wang, X.-S.; Yu, X.-J.; Wei, K.; Wang, S.-X.; Liu, Q.-K.; Wang, Y.-G.; Li, H.; Huang, C. Mesenchymal stem cells shuttling miR-503 via extracellular vesicles enhance glioma immune escape. OncoImmunology 2022, 11, 1965317. [Google Scholar] [CrossRef]
- Boccaccio, C.; Comoglio, P.M. The MET oncogene in glioblastoma stem cells: Implications as a diagnostic marker and a therapeutic target. Cancer Res. 2013, 73, 3193–3199. [Google Scholar] [CrossRef] [PubMed]
- Carrato, C.; Alameda, F.; Esteve-Codina, A.; Pineda, E.; Arpí, O.; Martinez-García, M.; Mallo, M.; Gut, M.; Lopez-Martos, R.; Del Barco, S.; et al. Glioblastoma TCGA Mesenchymal and IGS 23 Tumors are Identifiable by IHC and have an Immune-phenotype Indicating a Potential Benefit from Immunotherapy. Clin. Cancer Res. 2020, 26, 6600–6609. [Google Scholar] [CrossRef]
- Nayak, C.; Singh, S.K. Integrated Transcriptome Profiling Identifies Prognostic Hub Genes as Therapeutic Targets of Glioblastoma: Evidenced by Bioinformatics Analysis. ACS Omega 2022, 7, 22531–22550. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Lim, J.Y.; Jeong, C.H.; Oh, J.H.; Jeong, M.; Oh, W.; Park, S.-H.; Sung, Y.-C.; Jeun, S.-S. Gene therapy using TRAIL-secreting human umbilical cord blood–derived mesenchymal stem cells against intracranial glioma. Cancer Res. 2008, 68, 9614–9623. [Google Scholar] [CrossRef] [PubMed]
- Katakowski, M.; Chopp, M. Exosomes as Tools to Suppress Primary Brain Tumor. Cell. Mol. Neurobiol. 2016, 36, 343–352. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, Y.; Zhou, W.; Xu, X.; Zheng, J. Bone Marrow Stromal Cells inhibited the growth and metastasis of human U87 cells through delivering exosomal miR-506. Medicine 2023, 102, e36582. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, Y.; Wu, N. Role of Tumor-Derived Extracellular Vesicles in Glioblastoma. Cells 2021, 10, 512. [Google Scholar] [CrossRef]
- Kitzberger, C.; Spellerberg, R.; Han, Y.; Schmohl, K.A.; Stauss, C.; Zach, C.; Kälin, R.E.; Multhoff, G.; Eiber, M.; Schilling, F.; et al. Mesenchymal Stem Cell–mediated Image-guided Sodium Iodide Symporter (NIS) Gene Therapy Improves Survival of Glioblastoma-bearing Mice. Clin. Cancer Res. 2023, 29, 930–942. [Google Scholar] [CrossRef]
- Kim, S.M.; Kim, D.-S.; Jeong, C.H.; Kim, D.H.; Kim, J.H.; Jeon, H.B.; Kwon, S.-J.; Jeun, S.-S.; Yang, Y.S.; Oh, W.; et al. CXC chemokine receptor 1 enhances the ability of human umbilical cord blood-derived mesenchymal stem cells to migrate toward gliomas. Biochem. Biophys. Res. Commun. 2011, 407, 741–746. [Google Scholar] [CrossRef]
- Erkan, E.P.; Saydam, N.; Chen, C.C.; Saydam, O. Extracellular Vesicles as Carriers of Suicide mRNA and/or Protein in Cancer Therapy. Methods Mol. Biol. 2019, 1895, 87–96. [Google Scholar] [CrossRef]
Author, Year | Oraee Yazdani, 2021 [13] | Oraee Yazdani, 2023 [14] | Oraee Yazdani, 2023 [15] |
---|---|---|---|
Patients (N) | 5 | 12 | 1 |
Age (mean, range) | 46, (32, 62) | 57 | 37 |
Sex M (F/M ratio) | 4, 80.0% | 8, 66.7% | 1, 100% |
Prior treatment | Surgery, CT, RT | Surgery, CT | Surgery |
MSCs targeted treatment agent | HSVtk gene to the tumor’s frontal focus, and then take ganciclovir for 14 days. | HSVtk gene to the tumor’s frontal focus, and then take ganciclovir for 14 days. | HSVtk gene to the tumor’s frontal focus, and then take ganciclovir for 14 days. |
Next treatment | N/A | N/A | N/A |
Mean Follow-up (months) | N/A | 16 | 12 |
Outcome | PFS 21 mos OS 29 mos 1-year PFS: 60% 1-year OS: 100% | PD (11 pts) OS: 16.0 mos PFS: 11.0 mos | PD PFS: 9 mos OS: 17 mos |
Adverse effects | Mild-to-moderate fever, headache, and cerebrospinal fluid leukocytosis | N/A | N/A |
Author, Year | Study Type | MSC Treatment | Study Purpose | Results |
---|---|---|---|---|
Zhang et al., 2014 [16] | In vitro, in vivo (ICR mice with orthotopic intracranial C6 glioma) | doxorubicin (DOX)-polymer conjugates (PPCD) modified by RGD (RGD-PPCD) | The study compared the anti-tumor properties of MSCs loaded with RGD-/PPCD (MSCsRGD-/PPCD) compared to their corresponding RGD-/PPCD and MSCsDOX. | Compared to MSCsDOX, MSCsRGD-/PPCD showed greater penetration and increased tumor cell death. |
Bryukhovetskty et al., 2015 [17] | In vivo (C6 glioma Wistar rat models) | Multipotent mesenchymal stromal cells and TMZ | The study investigates the results of MMSC transplantation during chemotherapy for a C6 glioma model in rats. | The survival of experimental animals treated with MMSC transplantation and temozolomide treatment was dramatically increased compared to animals treated with temozolomide alone. |
Pacioni et al., 2015 [18] | In vivo (xenografted U87MG cells) | PTX loaded MSCs | The GBM model is employed to ascertain whether PTX-MSCs continue to exhibit a preference for the tumor cells and describe the cytotoxic harm brought on by MSC-driven PTX release in the tumor microenvironment. | Since PTX may selectively kill GBM cells while avoiding negative effects on normal tissue, MSCs are well adapted for the administration of anti-neoplastic medications in the brain. |
Jiang et al., 2016 [19] | In vivo (GBM xenograft mice) | hADSCs overexpressing TRAIL | hADSCs produced from fat tissue could be a better option than stem cell-based cancer gene therapy. Several biological medications, such as prodrugs, chemotherapeutic agents, and genetic signals, may be administered by utilizing stem cells as drug delivery vehicles. | hADSCs overexpressing TRAIL slowed the growth of GBM, increased survival, and decreased the number of microsatellites. |
Pacioni et al., 2017 [20] | In vivo (orthotopic xenografts of U87MG cells) | PTX-loaded hMSCs | The capacity of MSCs to release bioactive chemicals makes them an appealing option for cell-based cancer therapy. | hMSCs have a therapeutic potential in GBM brain xenografts that are also expressed negatively against the GSC population. |
Malik et al., 2018 [21] | In vitro, in vivo (C6 glioma cells rat models) | PEI-PLL copolymer to generate genetically engineered MSCs with suicidal genes, HSV-TK, and TRAIL. | Viral vectors that can cause oncogenicity and restrict the use of MSCs in clinical trials have been used to modify the cells for cancer therapy genetically. Non-viral agents, such as PEI-PLL, were employed in this investigation. | An intratumoral injection of polymer-double-transfected MSCs combined with prodrug ganciclovir can significantly enhance the therapeutic response in vitro and in vivo. |
Mao et al., 2020 [22] | In vivo (animals bearing orthotopic gliomas) | IFNβ and FTH overexpressed MSCs (IFNβ-FTH-MSCs) | This work used in vivo MRI tracking to investigate whether MSCs may be employed as cellular carriers to deliver IFNβ locally for glioma therapy. | MSCs can be employed as IFNβ cellular carriers to treat malignant glioma effectively. |
Tu et al., 2020 [23] | In vitro, in vivo (glioma cells nude rats models) | CD::UPRT::GFP-expressing MSCs | The purpose of this work was to find a simple, highly effective, and scalable non-viral technique for transiently engineering MSCs to express a fused transgene over an extended period of time at abnormally high levels. | The effective non-viral approach may allow for the scalable translation of therapeutically altered MSC in the management of GBM that is resistant to TMZ. |
Mohme et al., 2020 [24] | In vivo (orthotopic syngeneic glioma model in C57BL/6 mice) | MSCs to co-express high levels of IL-12 and IL-7 (MSCIL7) | Motile MSC-based local immunomodulation potential was validated to stimulate an anticancer immune response and overcome the immunosuppressive glioblastoma microenvironment. | It is possible to effectively modify the immunosuppressive milieu in glioblastoma through local MSC-based immunomodulation. |
Shimizu et al., 2021 [25] | In vitro, in vivo (U87MG cells nude mice models) | PD-BM-MSC-D24 | Human mesenchymal stem cells generated from bone marrow and taken from healthy donors were studied for their potential as viral carriers. | BM-hMSCs can be obtained from patients who have had marrow-toxic chemotherapy. These cells, known as PD-BM-hMSCs, are efficient oncolytic viral carriers. |
Park et al., 2024 [26] | In vivo (glioma cells C57BL/6 mice models) | IL-12-secreting mesenchymal stem cells | The therapeutic effects of anti-PD-1, MSC_IL-12, and their combination against glioblastoma were assessed using IL-12-secreting mesenchymal stem cells that were generated with glioma tropism. | Long-term treatment responses are observed with anti-PD-1 and MSC-IL-12 monotherapies; their combination increases anticancer efficacy against glioblastoma by generating an immune-favorable tumor microenvironment. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agosti, E.; Antonietti, S.; Ius, T.; Fontanella, M.M.; Zeppieri, M.; Panciani, P.P. A Systematic Review of Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Potential Treatment for Glioblastoma. Brain Sci. 2024, 14, 1058. https://doi.org/10.3390/brainsci14111058
Agosti E, Antonietti S, Ius T, Fontanella MM, Zeppieri M, Panciani PP. A Systematic Review of Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Potential Treatment for Glioblastoma. Brain Sciences. 2024; 14(11):1058. https://doi.org/10.3390/brainsci14111058
Chicago/Turabian StyleAgosti, Edoardo, Sara Antonietti, Tamara Ius, Marco Maria Fontanella, Marco Zeppieri, and Pier Paolo Panciani. 2024. "A Systematic Review of Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Potential Treatment for Glioblastoma" Brain Sciences 14, no. 11: 1058. https://doi.org/10.3390/brainsci14111058
APA StyleAgosti, E., Antonietti, S., Ius, T., Fontanella, M. M., Zeppieri, M., & Panciani, P. P. (2024). A Systematic Review of Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Potential Treatment for Glioblastoma. Brain Sciences, 14(11), 1058. https://doi.org/10.3390/brainsci14111058