Surgical Resection Followed by Stereotactic Radiosurgery (S+SRS) Versus SRS Alone for Large Posterior Fossa Brain Metastases: A Comparative Analysis of Outcomes and Factors Guiding Treatment Modality Selection
Abstract
:1. Introduction
2. Methodology
2.1. Treatments
2.2. Surveillance
2.3. Variables
2.4. Outcomes
2.5. Statistical Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soliman, H.; Das, S.; Larson, D.A.; Sahgal, A. Stereotactic radiosurgery (SRS) in the modern management of patients with brain metastases. Oncotarget 2016, 7, 12318–12330. [Google Scholar] [CrossRef] [PubMed]
- Tsao, M.N.; Lloyd, N.; Wong, R.K.; Chow, E.; Rakovitch, E.; Laperriere, N.; Xu, W.; Sahgal, A. Whole brain radiotherapy for the treatment of newly diagnosed multiple brain metastases. Cochrane Database Syst. Rev. 2012, 2012, CD003869. [Google Scholar] [CrossRef] [PubMed]
- Lassman, A.B.; DeAngelis, L.M. Brain metastases. Neurol. Clin. 2003, 21, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Achrol, A.S.; Rennert, R.C.; Anders, C.; Soffietti, R.; Ahluwalia, M.S.; Nayak, L.; Peters, S.; Arvold, N.D.; Harsh, G.R.; Steeg, P.S.; et al. Brain metastases. Nat. Rev. Dis. Primers 2019, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Vogelbaum, M.A.; Brown, P.D.; Messersmith, H.; Brastianos, P.K.; Burri, S.; Cahill, D.; Dunn, I.F.; Gaspar, L.E.; Gatson, N.T.N.; Gondi, V.; et al. Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline. J. Clin. Oncol. 2022, 40, 492–516. [Google Scholar] [CrossRef]
- Zoghbi, M.; Moussa, M.J.; Dagher, J.; Haroun, E.; Qdaisat, A.; Singer, E.D.; Karam, Y.E.; Yeung, S.-C.J.; Chaftari, P. Brain Metastasis in the Emergency Department: Epidemiology, Presentation, Investigations, and Management. Cancers 2024, 16, 2583. [Google Scholar] [CrossRef]
- Sacks, P.; Rahman, M. Epidemiology of Brain Metastases. Neurosurg. Clin. N. Am. 2020, 31, 481–488. [Google Scholar] [CrossRef]
- Calluaud, G.; Terrier, L.-M.; Mathon, B.; Destrieux, C.; Velut, S.; François, P.; Zemmoura, I.; Amelot, A. Peritumoral Edema/Tumor Volume Ratio: A Strong Survival Predictor for Posterior Fossa Metastases. Neurosurgery 2019, 85, 117–125. [Google Scholar] [CrossRef]
- Roux, A.; Botella, C.; Still, M.; Zanello, M.; Dhermain, F.; Metellus, P.; Pallud, J. Posterior Fossa Metastasis-Associated Obstructive Hydrocephalus in Adult Patients: Literature Review and Practical Considerations from the Neuro-Oncology Club of the French Society of Neurosurgery. World Neurosurg. 2018, 117, 271–279. [Google Scholar] [CrossRef]
- Steinruecke, M.; Pronin, S.; Gherman, A.-V.; Emelifeonwu, J.; Liaquat, I. Survival and complications following supra- and infratentorial brain metastasis resection. Surgeon 2023, 21, e279–e286. [Google Scholar] [CrossRef]
- Muldoon, L.L.; Soussain, C.; Jahnke, K.; Johanson, C.; Siegal, T.; Smith, Q.R.; Hall, W.A.; Hynynen, K.; Senter, P.D.; Peereboom, D.M.; et al. Chemotherapy delivery issues in central nervous system malignancy: A reality check. J. Clin. Oncol. 2007, 25, 2295–2305. [Google Scholar] [CrossRef] [PubMed]
- Lamba, N.; Wen, P.Y.; Aizer, A.A. Epidemiology of brain metastases and leptomeningeal disease. Neuro Oncol. 2021, 23, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Kanner, A.A.; Suh, J.H.; Siomin, V.E.; Lee, S.-Y.; Barnett, G.H.; Vogelbaum, M.A. Posterior fossa metastases: Aggressive treatment improves survival. Ster. Funct. Neurosurg. 2003, 81, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Ammirati, M.; Nahed, B.V.; Andrews, D.; Chen, C.C.; Olson, J.J. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on Treatment Options for Adults with Multiple Metastatic Brain Tumors. Neurosurgery 2019, 84, E180–E182. [Google Scholar] [CrossRef]
- Mahajan, A.; Ahmed, S.; McAleer, M.F.; Weinberg, J.S.; Li, J.; Brown, P.; Settle, S.; Prabhu, S.S.; Lang, F.F.; Levine, N.; et al. Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: A single-centre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1040–1048. [Google Scholar] [CrossRef]
- Brown, P.D.; Ballman, K.V.; Cerhan, J.H.; Anderson, S.K.; Carrero, X.W.; Whitton, A.C.; Greenspoon, J.; Parney, I.F.; Laack, N.N.I.; Ashman, J.B.; et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): A multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1049–1060. [Google Scholar] [CrossRef]
- Graber, J.J.; Cobbs, C.S.; Olson, J.J. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Use of Stereotactic Radiosurgery in the Treatment of Adults with Metastatic Brain Tumors. Neurosurgery 2019, 84, E168–E170. [Google Scholar] [CrossRef]
- Borgelt, B.; Gelber, R.; Kramer, S.; Brady, L.W.; Chang, C.H.; Davis, L.W.; Perez, C.A.; Hendrickson, F.R. The palliation of brain metastases: Final results of the first two studies by the Radiation Therapy Oncology Group. Int. J. Radiat. Oncol. 1980, 6, 1–9. [Google Scholar] [CrossRef]
- Yamamoto, M.; Serizawa, T.; Shuto, T.; Akabane, A.; Higuchi, Y.; Kawagishi, J.; Yamanaka, K.; Sato, Y.; Jokura, H.; Yomo, S.; et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): A multi-institutional prospective observational study. Lancet Oncol. 2014, 15, 387–395. [Google Scholar] [CrossRef]
- Serizawa, T.; Yamamoto, M.; Nagano, O.; Higuchi, Y.; Matsuda, S.; Ono, J.; Iwadate, Y.; Saeki, N. Gamma Knife surgery for metastatic brain tumors. J. Neurosurg. 2008, 109, 118–121. [Google Scholar] [CrossRef]
- Chang, E.L. Preserving Neurocognition in Patients with Brain Metastases. JAMA Oncol. 2017, 3, 269–270. [Google Scholar] [CrossRef]
- Chang, E.L.; Wefel, J.S.; Hess, K.R.; Allen, P.K.; Lang, F.F.; Kornguth, D.G.; Arbuckle, R.B.; Swint, J.M.; Shiu, A.S.; Maor, M.H.; et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: A randomised controlled trial. Lancet Oncol. 2009, 10, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Churilla, T.M.; Chowdhury, I.H.; Handorf, E.; Collette, L.; Collette, S.; Dong, Y.; Alexander, B.M.; Kocher, M.; Soffietti, R.; Claus, E.B.; et al. Comparison of Local Control of Brain Metastases with Stereotactic Radiosurgery vs Surgical Resection: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2019, 5, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Valencia, E.; Kalyvas, A.; Villafuerte, C.J.; Millar, B.-A.; Laperriere, N.; Conrad, T.; Berlin, A.; Weiss, J.; Zadeh, G.; Bernstein, M.; et al. Factors Correlating with Survival following Adjuvant or Definitive Radiosurgery for Large Brain Metastases. Neuro Oncol. 2022, 24, 1925–1934. [Google Scholar] [CrossRef]
- Barker, F.G. Surgical and Radiosurgical Management of Brain Metastases. Surg. Clin. N. Am. 2005, 85, 329–345. [Google Scholar] [CrossRef]
- Muhsen, B.A.; Joshi, K.C.; Lee, B.S.; Thapa, B.; Borghei-Razavi, H.; Jia, X.; Barnett, G.H.; Chao, S.T.; Mohammadi, A.M.; Suh, J.H.; et al. The effect of Gamma Knife radiosurgery on large posterior fossa metastases and the associated mass effect from peritumoral edema. J. Neurosurg. 2021, 134, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, H.; Chen, Q.; Zhu, Y.; Li, M.; Jia, Z. ‘Sandwich treatment’ for posterior fossa brain metastases with volume larger than 4 cm3: A multicentric retrospective study. Clin. Exp. Metastasis 2023, 40, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Formentin, C.; Matias, L.G.; Santos, L.D.S.R.D.; de Almeida, R.A.A.; Joaquim, A.F.; Ghizoni, E. Anatomy of the posterior Fossa: A comprehensive description for pediatric brain tumors. Child’s Nerv. Syst. 2024, 40, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, S.; Shuto, T.; Kobayashi, N.; Murata, H.; Yamamoto, T. Acute Management of Gamma Knife Radiosurgery for Asymptomatic Obstructive Hydrocephalus Associated with Posterior Fossa Metastases. World Neurosurg. 2020, 144, e714–e722. [Google Scholar] [CrossRef]
- Arriada, N.; Sotelo, J. Continuous-flow shunt for treatment of hydrocephalus due to lesions of the posterior fossa. J. Neurosurg. 2004, 101, 762–766. [Google Scholar] [CrossRef]
- Traylor, J.I.; Patel, R.; Habib, A.; Muir, M.; de Almeida Bastos, D.C.; Rao, G.; Prabhu, S.S. Laser Interstitial Thermal Therapy to the Posterior Fossa: Challenges and Nuances. World Neurosurg. 2019, 132, e124–e132. [Google Scholar] [CrossRef] [PubMed]
- Nanda, A. Principles of Posterior Fossa Surgery, 1st ed.; Thieme: New York, NY, USA, 2011. [Google Scholar]
- Sunderland, G.J.; Jenkinson, M.D.; Zakaria, R. Surgical management of posterior fossa metastases. J. Neurooncol. 2016, 130, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Schiff, D.; Batchelor, T.; Wen, P.Y. Neurologic emergencies in cancer patients. Neurol. Clin. 1998, 16, 449–483. [Google Scholar] [CrossRef] [PubMed]
- Chaichana, K.L.; Rao, K.; Gadkaree, S.; Dangelmajer, S.; Bettegowda, C.; Rigamonti, D.; Weingart, J.; Olivi, A.; Gallia, G.L.; Brem, H.; et al. Factors associated with survival and recurrence for patients undergoing surgery of cerebellar metastases. Neurol. Res. 2014, 36, 13–25. [Google Scholar] [CrossRef]
- Ghods, A.; Byrne, R.; Munoz, L. Surgical treatment of cerebellar metastases. Surg. Neurol. Int. 2011, 2, 159. [Google Scholar] [CrossRef]
- Moraes, F.Y.; Winter, J.; Atenafu, E.G.; Dasgupta, A.; Raziee, H.; Coolens, C.; Millar, B.-A.; Laperriere, N.; Patel, M.; Bernstein, M.; et al. Outcomes following stereotactic radiosurgery for small to medium-sized brain metastases are exceptionally dependent upon tumor size and prescribed dose. Neuro Oncol. 2019, 21, 242–251. [Google Scholar] [CrossRef]
- Yang, K.; Gutiérrez-Valencia, E.; Landry, A.P.; Kalyvas, A.; Millesi, M.; Leite, M.; Jablonska, P.A.; Weiss, J.; Millar, B.-A.; Conrad, T.; et al. Multiplicity does not significantly affect outcomes in brain metastasis patients treated with surgery. Neurooncol. Adv. 2022, 4, vdac022. [Google Scholar] [CrossRef]
- Patchell, R.A.; Tibbs, P.A.; Regine, W.F.; Dempsey, R.J.; Mohiuddin, M.; Kryscio, R.J.; Markesbery, W.R.; Foon, K.A.; Young, B. Postoperative radiotherapy in the treatment of single metastases to the brain: A randomized trial. JAMA 1998, 280, 1485–1489. [Google Scholar] [CrossRef]
- Hammoud, M.A.; Sawaya, R.; Shi, W.; Thall, P.F.; Leeds, N.E. Prognostic significance of preoperative MRI scans in glioblastoma multiforme. J. Neurooncol. 1996, 27, 65–73. [Google Scholar] [CrossRef]
- Ide, M.; Jimbo, M.; Kubo, O.; Yamamoto, M.; Takeyama, E.; Imanaga, H. Peritumoral brain edema and cortical damage by meningioma. Acta Neurochir. Suppl. 1994, 60, 369–372. [Google Scholar]
- Yoshioka, H.; Hama, S.; Taniguchi, E.; Sugiyama, K.; Arita, K.; Kurisu, K. Peritumoral brain edema associated with meningioma: Influence of vascular endothelial growth factor expression and vascular blood supply. Cancer 1999, 85, 936–944. [Google Scholar] [CrossRef]
- Lambertz, N.; El Hindy, N.; Adler, C.; Rump, K.; Adamzik, M.; Keyvani, K.; Bankfalvi, A.; Siffert, W.; Sandalcioglu, I.E.; Bachmann, H.S. Expression of aquaporin 5 and the AQP5 polymorphism A(-1364)C in association with peritumoral brain edema in meningioma patients. J. Neurooncol. 2013, 112, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.; Kim, J.M.; Cheong, J.H.; Ryu, J.I.; Won, Y.D.; Ko, Y.; Han, M.-H. Association between tumor size and peritumoral brain edema in patients with convexity and parasagittal meningiomas. PLoS ONE 2021, 16, e0252945. [Google Scholar] [CrossRef] [PubMed]
- Sperduto, P.W.; Mesko, S.; Li, J.; Cagney, D.; Aizer, A.; Lin, N.U.; Nesbit, E.; Kruser, T.J.; Chan, J.; Braunstein, S.; et al. Survival in Patients with Brain Metastases: Summary Report on the Updated Diagnosis-Specific Graded Prognostic Assessment and Definition of the Eligibility Quotient. J. Clin. Oncol. 2020, 38, 3773–3784. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.Y.; Chang, S.D.; Gibbs, I.C.; Adler, J.R.; Harsh, G.R.; Atalar, B.; Lieberson, R.E.; Soltys, S.G. What is the optimal treatment of large brain metastases? An argument for a multidisciplinary approach. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 688–693. [Google Scholar] [CrossRef]
- Ebner, D.; Rava, P.; Gorovets, D.; Cielo, D.; Hepel, J.T. Stereotactic radiosurgery for large brain metastases. J. Clin. Neurosci. 2015, 22, 1650–1654. [Google Scholar] [CrossRef]
- Zimmerman, A.L.; Murphy, E.S.; Suh, J.H.; Vogelbaum, M.A.; Barnett, G.H.; Angelov, L.; Ahluwalia, M.; Reddy, C.A.; Chao, S.T. Treatment of Large Brain Metastases with Stereotactic Radiosurgery. Technol. Cancer Res. Treat. 2016, 15, 186–195. [Google Scholar] [CrossRef]
- Angelov, L.; Mohammadi, A.M.; Bennett, E.E.; Abbassy, M.; Elson, P.; Chao, S.T.; Montgomery, J.S.; Habboub, G.; Vogelbaum, M.A.; Su, J.H.; et al. Impact of 2-staged stereotactic radiosurgery for treatment of brain metastases >/= 2 cm. J. Neurosurg. 2018, 129, 366–382. [Google Scholar] [CrossRef]
- Chon, H.; Yoon, K.; Lee, D.; Kwon, D.H.; Cho, Y.H. Single-fraction versus hypofractionated stereotactic radiosurgery for medium-sized brain metastases of 2.5 to 3 cm. J. Neurooncol. 2019, 145, 49–56. [Google Scholar] [CrossRef]
- Patchell, R.A.; Tibbs, P.A.; Walsh, J.W.; Dempsey, R.J.; Maruyama, Y.; Kryscio, R.J.; Markesbery, W.R.; Macdonald, J.S.; Young, B. A randomized trial of surgery in the treatment of single metastases to the brain. N. Engl. J. Med. 1990, 322, 494–500. [Google Scholar] [CrossRef]
- Bindal, R.K.; Sawaya, R.; Leavens, M.E.; Lee, J.J. Surgical treatment of multiple brain metastases. J. Neurosurg. 1993, 79, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, L.; Scott, C.; Rotman, M.; Asbell, S.; Phillips, T.; Wasserman, T.; McKenna, W.G.; Byhardt, R. Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int. J. Radiat. Oncol. Biol. Phys. 1997, 37, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Shlobin, N.A.; Sheldon, M.; Lam, S. Informed consent in neurosurgery: A systematic review. Neurosurg. Focus 2020, 49, E6. [Google Scholar] [CrossRef] [PubMed]
- Hanna, A.; Boggs, D.H.; Kwok, Y.; Simard, M.; Regine, W.F.; Mehta, M. What predicts early volumetric edema increase following stereotactic radiosurgery for brain metastases? J. Neurooncol. 2016, 127, 303–311. [Google Scholar] [CrossRef]
Full Sample (n = 63) | SRS (n = 34) | Surgery (n = 29) | p-Value | |
---|---|---|---|---|
Age | 0.66 | |||
Mean (sd) | 62.1 (12.3) | 61.4 (12.8) | 62.8 (11.9) | |
Median (Q1, Q3) | 61 (54, 71) | 61.0 (51.5, 70.5) | 61 (55, 71) | |
Range (min, max) | (33, 88) | (34, 87) | (33, 88) | |
Sex | 0.81 | |||
Male | 26 (41) | 15 (44) | 11 (38) | |
Female | 37 (59) | 19 (56) | 18 (62) | |
Primary Tumor Site | 0.09 | |||
Bladder | 1 (2) | 0 (0) | 1 (3) | |
Breast | 10 (16) | 5 (15) | 5 (17) | |
Cervix | 1 (2) | 0 (0) | 1 (3) | |
Colorectum | 8 (13) | 2 (6) | 6 (21) | |
Endocrine | 1 (2) | 1 (3) | 0 (0) | |
Endometrium | 1 (2) | 0 (0) | 1 (3) | |
Head and Neck | 1 (2) | 1 (3) | 0 (0) | |
Lung | 22 (35) | 14 (41) | 8 (28) | |
Melanoma | 7 (11) | 3 (9) | 4 (14) | |
Prostate | 2 (3) | 0 (0) | 2 (7) | |
Renal | 5 (8) | 5 (15) | 0 (0) | |
Sarcoma | 1 (2) | 1 (3) | 0 (0) | |
Two Primary | 1 (2) | 1 (3) | 0 (0) | |
Upper GI | 2 (3) | 1 (3) | 1 (3) | |
Number of BMs | 0.06 | |||
Mean (sd) | 2.3 (1.8) | 2.5 (1.7) | 2.0 (1.9) | |
Median (Q1, Q3) | 2 (1, 3) | 2.0 (1.0, 3.8) | 1 (1, 3) | |
Range (min, max) | (1, 10) | (1, 8) | (1, 10) | |
Number of PF BMs | 0.05 | |||
Mean (sd) | 1.3 (0.6) | 1.4 (0.7) | 1.1 (0.4) | |
Median (Q1, Q3) | 1 (1, 1) | 1.0 (1.0, 1.8) | 1 (1, 1) | |
Range (min, max) | (1, 4) | (1, 4) | (1, 3) | |
KPS | 0.03 | |||
Mean (sd) | 78.1 (18.9) | 73.5 (21.3) | 83.4 (14.2) | |
Median (Q1, Q3) | 90 (70, 90) | 70 (70, 90) | 90 (70, 90) | |
Range (min, max) | (20, 100) | (20, 100) | (50, 100) | |
ECOG | 0.12 | |||
Mean (sd) | 1.9 (1.0) | 1.7 (1.1) | 2.1 (0.8) | |
Median (Q1, Q3) | 2 (1, 3) | 2 (1, 2) | 2 (2, 3) | |
Range (min, max) | (0, 4) | (0, 4) | (1, 3) | |
Total GPA Score | 0.3 | |||
Mean (sd) | 2.2 (0.8) | 2.1 (0.8) | 2.3 (0.8) | |
Median (Q1, Q3) | 2.5 (1.5, 2.5) | 2.0 (1.5, 2.5) | 2.5 (1.5, 3) | |
Range (min, max) | (0.5, 3.5) | (1.0, 3.5) | (0.5, 3.5) | |
Neurological Death | 0.12 | |||
0 | 50 (79.4) | 24 (70.6) | 26 (89.7) | |
1 | 13 (20.6) | 10 (29.4) | 3 (10.3) | |
Radiological Edema Score | 0.50 | |||
0 or 1 | 17 (27) | 11 (32) | 6 (21) | |
2 or 3 | 45 (73) | 23 (68) | 22 (79) | |
Missing | 1 | 0 | 1 | |
Target Volume (cm3) | <0.001 | |||
Mean (sd) | 10.9 (8.1) | 6.7 (3.0) | 15.7 (9.5) | |
Median (Q1, Q3) | 8.2 (5.2, 14.5) | 5.4 (4.6, 8.0) | 15.2 (9.8, 19.8) | |
Range (min, max) | (4.1, 54.0) | (4.1, 14.8) | (5, 54) | |
Maximum Diameter | <0.0001 | |||
Mean (sd) | 2.6 (0.9) | 2.1 (0.5) | 3.3 (0.8) | |
Median (Q1, Q3) | 0.9 (2.0, 3.0) | 2.11 (1.8, 2.5) | 2.11 (2.61, 3.67) | |
Range (min, max) | (0.65, 5.21) | (0.65, 2.94) | (2.01, 5.21) | |
Fourth-Ventricle Compression | <0.001 | |||
No | 19 (31.1) | 18 (52.9) | 1 (3.7) | |
Yes | 42 (68.9) | 16 (47.1) | 26 (96.3) | |
Missing | 2 | 0 | 2 | |
Hydrocephalus | 0.002 | |||
No | 54 (88.5) | 34 (100.0) | 20 (74.1) | |
Yes | 7 (11.5) | 0 (0.0) | 7 (25.9) | |
Missing | 2 | 0 | 2 |
Univariable Cox Proportional Hazards Models | ||||
---|---|---|---|---|
HR (95% CI) | p-Value | Global p-Value | n | |
Treatment Group | 0.002 | 63 | ||
SRS | Reference | 34 | ||
Surgery | 0.39 (0.22, 0.71) | 29 | ||
ECOG | 1.04 (0.77, 1.41) | 0.78 | 63 | |
KPS | 0.98 (0.97, 0.99) | 0.003 | 63 | |
Number of brain metastases | 0.94 (0.80, 1.10) | 0.44 | 63 | |
Number of PF brain metastases | 0.86 (0.53, 1.40) | 0.55 | 63 | |
Extracranial disease status | 0.07 | 63 | ||
None | Reference | 32 | ||
Present | 1.66 (0.96, 2.89) | 31 | ||
Total GPA score | 0.65 (0.46, 0.93) | 0.02 | 63 | |
Radiological edema grade | 0.80 | 62 | ||
0 or 1 | Reference | 17 | ||
2 or 3 | 0.92 (0.50, 1.71) | 45 | ||
Target volume (cm3) | 1.01 (0.97, 1.05) | 0.78 | 63 | |
Presence of symptoms | 0.43 | 63 | ||
No | Reference | 11 | ||
Yes | 0.75 (0.38, 1.52) | 52 |
Multivariable Cox Proportional Hazards Models | |||
---|---|---|---|
HR (95% CI) | p-Value | VIF | |
Group | 0.006 | 1.18 | |
SRS | Reference | ||
Surgery | 0.40 (0.21, 0.77) | ||
Total GPA score | 0.84 (0.48, 1.47) | 0.54 | 2.52 |
extracranial disease binary | 0.22 | 1.81 | |
None | Reference | ||
Present | 1.59 (0.76, 3.36) | ||
KPS | 0.99 (0.97, 1.01) | 0.25 | 2.04 |
(A) Model A with Total GPA Score | |||
HR (95% CI) | p-Value | VIF | |
Group | <0.001 | 1.02 | |
SRS | Reference | ||
Surgery | 0.36 (0.19, 0.65) | ||
Extracranial disease | 0.46 | 1.38 | |
None | Reference | ||
Present | 1.28 (0.66, 2.45) | ||
Total GPA score | 0.67 (0.45, 1.01) | 0.057 | 1.38 |
(B) Model B with KPS | |||
HR (95% CI) | p-Value | VIF | |
Group | 0.008 | 1.08 | |
SRS | Reference | ||
Surgery | 0.43 (0.23, 0.80) | ||
Extracranial disease | 0.032 | 1.04 | |
None | Reference | ||
Present | 1.85 (1.05, 3.26) | ||
KPS | 0.98 (0.97, 1.00) | 0.028 | 1.08 |
Full Sample (n = 63) | SRS (n = 34) | Surgery (n = 29) | p-Value | StatTest | |
---|---|---|---|---|---|
Improvement in symptoms at 1st FU | 0.003 | Fisher Exact | |||
No | 10 (18.9) | 9 (37.5) | 1 (3.4) | ||
Yes | 43 (81.1) | 15 (62.5) | 28 (96.6) | ||
Missing | 10 | 10 | 0 | ||
Improvement in symptoms at 2nd FU | 0.04 | Fisher Exact | |||
No | 11 (20.0) | 9 (32.1) | 2 (7.4) | ||
Yes | 44 (80.0) | 19 (67.9) | 25 (92.6) | ||
Missing | 8 | 6 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lau, R.; Gutierrez-Valencia, E.; Santiago, A.; Lai, C.; Ahmed, D.B.; Habibi, P.; Laperriere, N.; Conrad, T.; Millar, B.-A.; Bernstein, M.; et al. Surgical Resection Followed by Stereotactic Radiosurgery (S+SRS) Versus SRS Alone for Large Posterior Fossa Brain Metastases: A Comparative Analysis of Outcomes and Factors Guiding Treatment Modality Selection. Brain Sci. 2024, 14, 1059. https://doi.org/10.3390/brainsci14111059
Lau R, Gutierrez-Valencia E, Santiago A, Lai C, Ahmed DB, Habibi P, Laperriere N, Conrad T, Millar B-A, Bernstein M, et al. Surgical Resection Followed by Stereotactic Radiosurgery (S+SRS) Versus SRS Alone for Large Posterior Fossa Brain Metastases: A Comparative Analysis of Outcomes and Factors Guiding Treatment Modality Selection. Brain Sciences. 2024; 14(11):1059. https://doi.org/10.3390/brainsci14111059
Chicago/Turabian StyleLau, Ruth, Enrique Gutierrez-Valencia, Anna Santiago, Carolyn Lai, Danyal Baber Ahmed, Parnian Habibi, Normand Laperriere, Tatiana Conrad, Barbara-Ann Millar, Mark Bernstein, and et al. 2024. "Surgical Resection Followed by Stereotactic Radiosurgery (S+SRS) Versus SRS Alone for Large Posterior Fossa Brain Metastases: A Comparative Analysis of Outcomes and Factors Guiding Treatment Modality Selection" Brain Sciences 14, no. 11: 1059. https://doi.org/10.3390/brainsci14111059
APA StyleLau, R., Gutierrez-Valencia, E., Santiago, A., Lai, C., Ahmed, D. B., Habibi, P., Laperriere, N., Conrad, T., Millar, B.-A., Bernstein, M., Kongkham, P., Zadeh, G., Shultz, D. B., & Kalyvas, A. (2024). Surgical Resection Followed by Stereotactic Radiosurgery (S+SRS) Versus SRS Alone for Large Posterior Fossa Brain Metastases: A Comparative Analysis of Outcomes and Factors Guiding Treatment Modality Selection. Brain Sciences, 14(11), 1059. https://doi.org/10.3390/brainsci14111059